
Modern Mainframe development and
Application Lifecycle Management

Cost-effective and easy to implement Enterprise-wide ALM for
both mainframe and non-mainframe environments

2 Modern Mainframe development and ALM

Table of contents
Traditional or Modern Mainframe Development..5

Program Editor...6

On the mainframe...6

Non-mainframe alternative..6

File System...7

On the mainframe...7

Non-mainframe alternative..7

Versioning System..9

On the mainframe...9

Non-mainframe alternative..9

Compile Procedure.. 10

First conclusion.. 11

Enterprise-wide Application Lifecycle Management.. 11

IKAN ALM: Bringing Both Worlds Together..12

IKAN ALM Overview..12

IKAN ALM Architecture...13

Conclusion... 14

For More Information..15

Related Document..15

3Modern Mainframe development and ALM

Many of you have a huge mainframe legacy, sup-
porting the key operations of your company. At
the same time, innovation drives you to other
platforms, especially for customer and end-user
applications. Today, it is unimaginable that appli-
cations are not available through the Web or via
mobile devices.

Protecting that mainframe legacy to ensuring
business continuity and at the same time being
innovative by supporting Web and mobile applica-
tions, at an acceptable cost and while mastering
the risks, is no child’s play.

Mainframes are mainly used as back-end machines,
and the front-end is mostly served through the Web
or mobile devices.

That means that you not only have to manage your
mainframe legacy, but also the new frontends and,
most of all, the dependencies between those two.

Management
summary
As a CIO, you are confronted with major
challenges: you have to ensure business
continuity and protect your company’s for-
mer IT investments, and at the same time,
you need to innovate, master the risks and
be cost-efficient. Unfortunately, the bud-
gets to accomplish all that keep on getting
smaller.

Software applications play a key role in
your company’s revenue plans, but they
are becoming more complex and have to
keep pace with the ever changing business
needs.

Applications play a major
role in Revenue Growth

Cost Efficiency
Smaller Budgets

Shorter and more complex
Application Life Cycle

4 Modern Mainframe development and ALM

An additional serious concern is where to find the
resources that still have mainframe skills or who are will-
ing to acquire them?

The answer lies in understanding the changing role and
use of mainframes, and in finding out how today’s tech-
nology can be used to support both mainframes and
distributed environments.

This is where Application Lifecycle Management (ALM)
enters the game. ALM is used to manage the different
steps in your application’s lifecycle. It is easy to find
mainframe-based or PC-based ALM solutions. However,
finding one and the same ALM solution that handles both
environments is almost impossible.

Almost … as there exists IKAN ALM.

IKAN ALM is IKAN’s flagship product that takes care of
all previously mentioned challenges. It is innovative,
protects your legacy, masters the risks and is cost-ef-
ficient. On top of that, it supports both mainframe and
non-mainframe systems.

The objective of this white paper is to explain in more
detail how IKAN ALM can radically improve your main-
frame lifecycle management, and especially how
the developed applications can be deployed on the
mainframe.

First, we will explain how traditional development is done
on a mainframe and how the same work can be done
using the currently available PC-based tooling. Secondly,
we will explain what enterprise-wide Application
Lifecycle Management stands for, and, finally, we will
show how IKAN ALM can be used as a single point of con-
trol to protect your mainframe investments and combine
the best of both worlds.

Note: A detailed technical explanation of how IKAN
ALM works, can be found in our technical white
paper “Integrating IKAN ALM and Mainframes”.

5Modern Mainframe development and ALM

Traditional or Modern Mainframe Development

Conceptually, there is no difference in how a developer develops a program for mainframes,
Windows, Linux or mobile devices:

The software program needs to be developed, needs to be built/compiled and needs
to run.

To develop a program, the developer needs a programming language and an editor.

Once it is written, the program needs to be saved and/or versioned, and compiled.

The following lists up the main differences between developing programs for
  mainframe on a mainframe or on PC:

Mainframe PC

Programming languages On mainframes, COBOL and PL/1 are the
most popular programming languages

For Windows, Linux and Mobile, .NET and
Java are widely used.

Program editor IBM z/OS developers use ISPF as editor or
development environment

.NET users use Visual Studio and Java
developers mostly use an Eclipse-based
editor

File system IBM z/OS programmers save their pro-
grams in a PDS (Partitioned Data Set)

Under Windows a standard Windows
directory is used

Versioning system On IBM z/OS, CA-Panvalet, CA-Librarian,
Serena ChangeMan, MSP Data Manager
and IBM SCLM are used as version control
systems

.NET developers use Visual Source Safe or
Team Foundation Server, and Java devel-
opers use CVS, SUBVERSION or GIT

Compile procedure On IBM z/OS, programs are compiled
to translate source programs into load
modules

For .NET and Java, the code is built to
obtain an executable

In the next sections, we will explain how a developer works on the mainframe and how that same work can be done
using PC-based tooling. Each of those sections covers a specific part of the developer’s role.

Once the development is done, the developer’s job is finished and the ALM system will take over to do the final compile
on the mainframe. IKAN ALM can help you to complete the application lifecycle, by providing fully automated services
to compile/build and deploy/promote to test and production environments.

6 Modern Mainframe development and ALM

Program Editor
On the mainframe
On IBM z/OS, the most commonly
used editor is ISPF (Interactive
System Productivity Facility).
I S P F p r o v i d e s d e v e l o p e r s
features for application develop-
ment and for administering the

z/OS operating system. The features include:

•	 Browse - for viewing data sets and Partitioned Data
Set (PDS) members

•	 Edit - for editing data sets and PDS members
•	 Utilities - for performing data manipulation opera-

tions, such as:
•	 Data Set List - which allows the User to list and

manipulate (copy, move, rename, print, catalog,
delete, etc.) files (called "data sets" in the z/OS
environment).

•	 Member List - for similar manipulations of mem-
bers of PDSs.

•	 Search facilities for finding modules or text within
members or data sets.

•	 Compare facilities for comparing members or data
sets.

ISPF is mostly used as development environment or edi-
tor for writing COBOL, PL/1 programs and mainframe
scripts called JCL (Job Control Language).

Non-mainframe alternative
A today’s alternative for writing
COBOL, PL/1 or even JCL ISPF,
are Eclipse-based editors run-
ning on a PC.

Basically, an Eclipse-based or
.NET editor offers the same functionality as ISPF and
some additional benefits like:

•	 Automatic code completion
•	 Syntax checking, helping you out with writing correct

code while you type
•	 Debugging, with step-by-step, break points, variable

inspection, etc.
•	 Navigation capability (click on an object, go to its

definition; find where an object is used and the hier-
archy of calls leading to it; etc.).

When using an Eclipse-based editor, the mainframe com-
plexity is completely hidden from the developers and
they can use the same Eclipse-based editor as their peer
Java developers.

Another advantage is that by using one and the same
Eclipse framework for both your mainframe and
non-mainframe development, you can save on the costs
for managing different development environments.

Mainframe: ISPF editor, displaying a COBOL program

7Modern Mainframe development and ALM

File System
On the mainframe
Once a COBOL, PL/1 or JCL code
program is developed, it needs
to be stored in a file system.
On IBM z/OS, the COBOL, PL/1
and JCL code is stored in a PDS
(Partitioned Data Set).

A PDS contains one or more members, whereby each
member represents one fi le.

When using ISPF as editor, each individual program is
saved in a PDS member.

Non-mainframe alternative
When using an Eclipse-based
editor, the program is saved in
a standard Windows directory
or directly in a PDS through an
interface with z/OS.

In Windows terminology, we talk about a fi le directory
instead of a PDS, and members are called fi les. From a
functional point of view there is no diff erence.

Using a Windows or Linux-based directory structure
allows you to have one and the same fi le system for all
of your development, be it COBOL, PL/1 or Java, which
will be easier to manage and maintain.

Eclipse-based editor for a COBOL program

8 Modern Mainframe development and ALM

IBM mainframe Partitioned Data Set, member list

Windows directory with one member opened

9Modern Mainframe development and ALM

Versioning System
On the mainframe
In a PDS, you can have one copy of
your program: when you change
and save it with the same name,
the old copy will be overwritten
and you will have no history.

Although some editors can create a backup of the fi le
before updating, this does not give the same functional-
ity as a proper versioning system.

On IBM z/OS, CA Librarian, CA-Panvalet, IBM SCLM, MSP
DataManager are historically the best known versioning
systems. CA-Endevor and SERENA CHANGEMAN are also
widely used for version control, off ering additional con-
fi guration features.

Non-mainframe alternative
For non-z/OS environments,
we have IBM Clearcase, CVS,
Subversion, GIT and others.

All Eclipse-based editors have
access to version control repos-

itories. Eclipse has a “Team” function that allows you to
connect with most of the common VCRs like CVS (stan-
dard Eclipse), Subversion (subclipse, subversive), GIT, …

Those non-z/OS based librar y or version control
repositories provide good alternatives for the classic
mainframe-based library or version control systems. As
CVS, Subversion and GIT are very popular in the distrib-
uted world, using these also for mainframe versioning
off ers you one and the same solution for managing all
your versioning, be it for mainframe, Windows, Linux or
mobile.

Eclipse Team functionality

10 Modern Mainframe development and ALM

Compile Procedure
Once a program (be it in COBOL, Java or.NET) is written
and added to the versioning system, it needs to be com-
piled or built. IBM z/OS uses the Job Control Language
(JCL) as a scripting language. To write JCL, you can use
ISPF, a JCL generator or, once again, an Eclipse-based

editor. The example below is a standard example of a
JCL to compile a COBOL program. Based on a standard
script, IKAN ALM will generate the complete JCL for you
and will do the necessary to submit the JCL.

//IGYWCLG PROC LNGPRFX='IGY.V4R1M0',SYSLBLK=3200,

// LIBPRFX='CEE',GOPGM=GO

//*

//* COMPILE, LINK EDIT A COBOL PROGRAM

//*

//* PARAMETER DEFAULT VALUE USAGE

//* LNGPRFX IGY.V4R1M0 PREFIX FOR LANGUAGE DATA SET NAMES

//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET

//* LIBPRFX CEE PREFIX FOR LIBRARY DATA SET NAMES

//* GOPGM GO MEMBER NAME FOR LOAD MODULE

//*

//* CALLER MUST SUPPLY //COBOL.SYSIN DD . . .

//*

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K

//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(BLKSIZE=&SYSLBLK)

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K

//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,

// DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSNAME=&&LOADSET,DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&&GOSET(&GOPGM),SPACE=(TRK,(10,10,1)),

// UNIT=SYSDA,DISP=(MOD,PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))

//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL),(4,LT,LKED)),

// REGION=2048K

//STEPLIB DD DSNAME=&LIBPRFX..SCEERUN,

// DISP=SHR

//SYSPRINT DD SYSOUT=*//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

11Modern Mainframe development and ALM

First conclusion
For developing mainframe-based applications you can use native mainframe tools
(ISPF, JCL, …), but you can just as well use the same tools as Windows, .NET and
Mobile developers use:

•	 Eclipse-based editors for COBOL or PL/1, instead of ISPF editors,
•	 Standard Windows directories instead of a PDS,
•	 IBM ClearCase, CVS, Subversion, GIT, … as version control

repositories,
•	 Ant or Maven as scripting languages, instead of JCL.

Main advantage: Using the same tools, considerably low-
ers the costs of having to manage different systems.

Once the development of your COBOL, PL/1 programs is
done and your developer has committed his work to the
version control repository, IKAN ALM takes care of the next
steps in the application lifecycle: compile/build, deploy or
promote to test or production environments.

Enterprise-wide Application
Lifecycle Management
As development is just a part of the overall software
release process, a complete solution, be it for mainframe
of for a PC-based environment, should also cover the
other parts of the release process or application lifecy-
cle, and especially the deployment to the mainframe

Application Lifecycle Management, abbreviated as ALM,
refers to the capability to integrate, coordinate and
manage the different phases of the software delivery
process. From development to deployment, ALM is a set
of pre-defined processes that include definition, design,
development, testing, deployment and management.
Throughout the ALM process, each of these steps are
closely monitored and controlled.

More specifically, enterprise-wide ALM needs to offer a
solution for the following:

1.	 It should be able to manage different environ-
ment s: the mainframe environment (Eclipse
-based or not) as well as the non-mainframe
environment, whereby also the dependencies
between those different environments managed.

In many
cases, main-
frames are used
to develop and manage the
back-end applications and the front-end applications
are being developed and managed in Java or .NET.

2.	 Another important point of attention is the difference
between release-based and package-based applica-
tion lifecycle approaches.

a)	 In a PC-based environment (Java, .NET) usually all
components of a project are taken into account
to build or promote (deploy) a release. That is the
release-based approach.

b)	 In a mainframe environment, not all COBOL pro-
grams that are part of a project are compiled,
promoted or deployed together. Only those pro-
grams and components that have changed or that
are new will be taken into account. That is the
package-based approach.

12 Modern Mainframe development and ALM

Thus, to have an enterprise-wide ALM solution, you will
need a product that can handle release-based (all com-
ponents) and package-based (some components)

“releases” and this for both mainframe and non-main-
frame environments.

IKAN ALM is such a solution. It not only offers the same capabilities as mainframe-based products
like CA-Endevor, Serena ChangeMan or IBM SCLM, which are pure mainframe products, but on top
of that IKAN ALM is more cost-effective, straightforward to implement and manage, and supports
both mainframe and non-mainframe systems.

IKAN ALM: Bringing Both
Worlds Together
In the previous sections we explained how developers
can use an Eclipse-based editor as an alternative for ISPF
to do their work, how standard Windows directories com-
pare to a PDS, what the different alternatives for version
management are and what is generally expected from a
complete Application Lifecycle Management solution.

The next question that arises is: How does IKAN ALM,
being a web-based application, handle the Application
Lifecycle Management process for a mainframe?

IKAN ALM Overview
The graphic on the next page shows an overview of the
IKAN ALM process and its main stakeholders.

IKAN ALM offers the following key services:

•	 Lifecycle per project and per branch:
It is up to you to define your lifecycle(s). A classic
example is DTAP: Development, Test, Acceptance
and Production.

•	 Compile/Build:
IKAN ALM supports continuous integration, sched-
uled builds or builds on demand. For each Build,
IKAN ALM can give you an overview of the related
issues. Issues are entered by the developer when
committing to the VCR. IKAN ALM will synchronize
them with the Issue Tracking System.

•	 Deploy:
Once a Build is done, IKAN ALM can deploy or pro-
mote the Build result to a next level. That next level
can be a test level or a production level.

•	 Phases:
The concept of phases is one of IKAN ALM’s major
assets.

Compile/Build or Deploy actions in IKAN ALM are
performed by executing a sequence of Phases, each
representing specific tasks or actions. The IKAN ALM
core functionality is performed by so-called “Core”
Phases which are read-only and form an integral
part of IKAN ALM.

Additionally, Users can create their own “Custom”
Phases which can be completely adapted to their
specific needs and environments. Phases can be
reused and shared between different Projects and
even different IKAN ALM installations.

•	 Approval and Notification:
Any deploy request within IKAN ALM can depend on
an approval. An email will be sent to the approver,
and the approver can then approve or disapprove.
Any request can be the subject of a notification:
through notifications you will be informed if an
action was successful or unsuccessful.

13Modern Mainframe development and ALM

Next to these key services, IKAN ALM offers:

•	 	Integration with Version Control Systems:
For each project you can specify the VCR to be used
by IKAN ALM. Different VCRs can be used for differ-
ent projects.

•	 	Integration with Issue Tracking Systems:
IKAN ALM comes with an Issue Tracking System
plugin that you can customize to your own needs.

Per Build or Deploy, the related issues are displayed,
and with a simple click, the issue Tracking System
will be opened to show all the related information.
This integration is bi-directional.

IKAN ALM Architecture

The graphic on the next page shows the IKAN ALM
architecture.

•	 	Web-based:
IKAN ALM is a web-based application. All you need is
a web browser.

•	 	Agents:
IKAN ALM works with Agents: Compile/Build or
Deploy requests can be executed on a local or on a
remote agent.

•	 	Communication:
IKAN ALM works with ftp, file copy or secured shell.

•	 	Reporting:
IKAN ALM has an Open Source based reporting mod-
ule which is easily extendible.

14 Modern Mainframe development and ALM

Conclusion
At fi rst sight, mainframe development seems to be completely diff erent from .NET or Java devel-

opment. In both cases, however, you need the same building blocks: a program editor, a fi le
system, a version control repository and a compile(build) procedure.

As technology constantly evolves and applications are more and more used on
diff erent platforms, it becomes inevitable to combine the best of both the main-

frame and the non-mainframe world.

IKAN ALM off ers an alternative for pure mainframe-based development by
combining an Eclipse-based development environment with a distributed
Version Control Repository. On top of that IKAN ALM complements the
development process with Application Lifecycle Management and Deploy
services.

IKAN ALM’s major asset is its concept of Phases. JCL can be very complicated.
By using the IKAN ALM Phases, you can easily generate and tailor any JCL step.

Thanks to the phase concept and the available models and resources, we can
also guarantee an easy and successful implementation (as an average, it will only

take a few weeks). The key requirement is for you to defi ne your ALM process. Once
that has been established, the implementation of IKAN ALM is fast and straightforward.

15Modern Mainframe development and ALM

If you are already using a mainframe solution like
CA-Endevor or Serena ChangeMan, and you would decide
to migrate to IKAN ALM, you will of course also need to
migrate your CA-Endevor or Serena ChangeMan legacy
to IKAN ALM. To do so, we have also worked out detailed
migration procedures.

For more technical details on how IKAN ALM works
and what the different tasks are for Users, Global
Administrators and Project Managers, we refer to
our technical white paper “Integrating IKAN ALM and
Mainframes”. That document is intended for your devel-
opers, technical mainframe and/or non-mainframe
experts and software architects. We are confident that,
after having read that document, they will confirm you
the enormous advantages of putting in place our IKAN
ALM solution.

For More Information
To know more, visit http://www.ikanalm.com
Contact IKAN Development: info@ikanalm.com

Related Document
Integrating IKAN ALM and Mainframes

In a nutshell: by implementing IKAN ALM, you
can continue exploiting the full strengths of
your mainframe and seamlessly combine
them with new innovative tooling.

This will help you cutting down the costs of
maintaining different systems, and above all
ease the work of your developers as IKAN ALM
will take care of the different steps in your
application’s lifecycle including its deploy on
the mainframe.

UK: Visit http://www.value-4it.com
Value-4IT Email: info@value-4it.com

IKAN Development N.V.
Schaliënhoevedreef 20 A

2800 Mechelen
Tel. +32 (0)15 44 50 40

info@ikan.be
www.ikan.be

© Copyright 2013 IKAN Development N.V.

The IKAN Development and IKAN ALM logos and names and all other IKAN product or service names are
trademarks of IKAN Development N.V. All other trademarks are property of their respective owners. No
part of this document may be reproduced or transmitted in any form or by any means, electronically
or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

Value-4IT Limited
7 Wright Road Long Buckby
Northampton NN6 7GG UK
+44 (0) 845 0579386
info@value-4it.com
www.value-4it.com

