IKANALM

Modern Mainframe development and
Application Lifecycle Management

Cost-effective and easy to implement Enterprise-wide ALM for
both mainframe and non-mainframe environments

>
*
>
>
>
*
-

>
B
-
;\
N
K
S
'@
-
»
2
Z
2
z
z
»

Table of contents

Traditional or Modern Mainframe DevelopmeNntcccveeeeriinieiecieesesreseeree e et aeeereseens 5
PrOZram EAITOrcouiiuiiiieieiete ettt ettt ettt s b ettt e a e b b e st et et et eaeebens 6

ON the MaINTIAME (.t e sttt 6
Non-mainframe alterNatiVe......c.ccoevirerieieiee et 6

FIlE SYSTEM ettt ettt ettt s b e e e e st e st e besbe et et e ese e e e saeenaebeennensenseenes 7

ON the MaINFrAME .ottt sttt aes 7
NON-Mainframe alterNatiVve........ccuveirieirie et 7
VEISIONING SYSTEIM ittt ettt et et sb e st et s bt et e st s st e sbesaeeabesbessaesesseenee 9

ON the MaINTIAME (.ot e 9
NoN-mMainframe alterNativecocceererierieree ettt sttt 9
COMPILE PrOCEAUIE ettt sttt et st et sa e s e et e sae e s e se et essesaeessessesssensesssensenes 10
FIrSt CONCIUSION .ttt sttt ettt st et be st stenbeeene 11
Enterprise-wide Application Lifecycle Management......c.cocveereerieeninenieenieeneseeseeseeseeens 11
IKAN ALM: Bringing Both Worlds TOZETNErccceiririniiieiereeeee et 12
TKAN ALM OVEIVIEW ...cuviniinienteuieieniertetetetee ettt et et sa ettt e et b b be e e e esteseebesaestennennene 12
TKAN ALM AFCRTEECTUIE ..ttt ettt ettt sttt sbe s b stente e ene 13
CONCIUSTON .ttt ettt bbbttt e bt s bt s bbb et et e st eb e b e sse e e e enis 14
FOr MOre INfOrmMation.....c.ceiiiriieieieteeeee ettt sttt et s b ettt et sbe b et ene 15
Related DOCUMENT ..ttt ettt sttt sa bbb sae e aennene 15

_ Modern Mainframe development and ALM

Management
summary

As a CIO, you are confronted with major

challenges: you have to ensure business
continuity and protect your company’s for-
mer IT investments, and at the same time,
you need to innovate, master the risks and
be cost-efficient. Unfortunately, the bud-
gets to accomplish all that keep on getting
smaller.

Software applications play a key role in
your company’s revenue plans, but they
are becoming more complex and have to
keep pace with the ever changing business
needs.

Many of you have a huge mainframe legacy, sup-
porting the key operations of your company. At
the same time, innovation drives you to other
platforms, especially for customer and end-user
applications. Today, it is unimaginable that appli-
cations are not available through the Web or via
mobile devices.

Protecting that mainframe legacy to ensuring
business continuity and at the same time being
innovative by supporting Web and mobile applica-
tions, at an acceptable cost and while mastering
the risks, is no child’s play.

Mainframes are mainly used as back-end machines,
and the front-end is mostly served through the Web
or mobile devices.

That means that you not only have to manage your
mainframe legacy, but also the new frontends and,
most of all, the dependencies between those two.

Applications play a major
role in Revenue Growth

Cost Efficiency
Smaller Budgets

Shorter and more complex
Application Life Cycle

Modern Mainframe development and ALM _

An additional serious concern is where to find the
resources that still have mainframe skills or who are will-
ing to acquire them?

The answer lies in understanding the changing role and
use of mainframes, and in finding out how today’s tech-
nology can be used to support both mainframes and
distributed environments.

This is where Application Lifecycle Management (ALM)
enters the game. ALM is used to manage the different
steps in your application’s lifecycle. It is easy to find
mainframe-based or PC-based ALM solutions. However,
finding one and the same ALM solution that handles both
environments is almost impossible.

Almost ... as there exists IKAN ALM.

_ Modern Mainframe development and ALM

IKAN ALM is IKAN’s flagship product that takes care of
all previously mentioned challenges. It is innovative,
protects your legacy, masters the risks and is cost-ef-
ficient. On top of that, it supports both mainframe and
non-mainframe systems.

The objective of this white paper is to explain in more
detail how IKAN ALM can radically improve your main-
frame lifecycle management, and especially how
the developed applications can be deployed on the
mainframe.

First, we will explain how traditional developmentis done
on a mainframe and how the same work can be done
using the currently available PC-based tooling. Secondly,
we will explain what enterprise-wide Application
Lifecycle Management stands for, and, finally, we will
show how IKAN ALM can be used as a single point of con-
trol to protect your mainframe investments and combine
the best of both worlds.

Note: A detailed technical explanation of how IKAN
ALM works, can be found in our technical white
paper “Integrating IKAN ALM and Mainframes”.

Traditional or Modern Mainframe Development

Conceptually, there is no difference in how a developer develops a program for mainframes,
Windows, Linux or mobile devices:

The software program needs to be developed, needs to be built/compiled and needs
to run.

To develop a program, the developer needs a programming language and an editor.

Once it is written, the program needs to be saved and/or versioned, and compiled.

The following lists up the main differences between developing programs for
mainframe on a mainframe or on PC:

Mainframe PC

On mainframes, COBOL and PL/1 are the
most popular programming languages

For Windows, Linux and Mobile, .NET and
Java are widely used.

Programming languages

.NET users use Visual Studio and Java
developers mostly use an Eclipse-based
editor

Program editor IBM z/0OS developers use ISPF as editor or

development environment

Under Windows a standard Windows
directory is used

File system IBM z/OS programmers save their pro-

grams in a PDS (Partitioned Data Set)

Versioning system

On IBM z/0S, CA-Panvalet, CA-Librarian,
Serena ChangeMan, MSP Data Manager
and IBM SCLM are used as version control
systems

.NET developers use Visual Source Safe or
Team Foundation Server, and Java devel-
opers use CVS, SUBVERSION or GIT

Compile procedure

On IBM z/0S, programs are compiled

For .NET and Java, the code is built to

to translate source programs into load | obtain an executable

modules

In the next sections, we will explain how a developer works on the mainframe and how that same work can be done
using PC-based tooling. Each of those sections covers a specific part of the developer’s role.

Once the development is done, the developer’s job is finished and the ALM system will take over to do the final compile
on the mainframe. IKAN ALM can help you to complete the application lifecycle, by providing fully automated services
to compile/build and deploy/promote to test and production environments.

Modern Mainframe development and ALM _

Program Editor

On the mainframe

On IBM z/0S, the most commonly
used editor is ISPF (Interactive
System Productivity Facility).
ISPF provides developers
features for application develop-
ment and for administering the

z/0OS operating system. The features include:

Browse - for viewing data sets and Partitioned Data

Set (PDS) members

Edit - for editing data sets and PDS members

Utilities - for performing data manipulation opera-

tions, such as:

e Data Set List - which allows the User to list and
manipulate (copy, move, rename, print, catalog,
delete, etc.) files (called "data sets" in the z/OS
environment).

e Member List - for similar manipulations of mem-
bers of PDSs.

¢ Search facilities for finding modules or text within
members or data sets.

e Compare facilities for comparing members or data
sets.

ISPF is mostly used as development environment or edi-

tor for writing COBOL, PL/1 programs and mainframe
scripts called JCL (Job Control Language).

EDIT
Conmand

Boee13
808814
888815
880016
BeBe1 T
BoBe18
Be8e19
Boeez2e
888821 ¥

File Edit Edit_Settings HMenu Utilities Compilers Test

IDENTIFICATION DIVISION.

PROGRAM-ID. DEMOZ].

* MODEL "DEMOZ1"

+ PROGRAM “DEMD21"

VERSION Bae1

UPDATED BY ""IKAH\fib™"
UH EHIE B3- HE B8:29: 34

L
L3
¥
3

¥ EEHEHHTED H? THE METHSUITE EEHEHHTUH
FOR IKAH SOFTUARE

Mainframe: ISPF editor, displaying a COBOL program

_ Modern Mainframe development and ALM

TKANALH.DEMOS. TEST. SRCBATCH(DEMO21) - 61.19

Non-mainframe alternative
A today’s alternative for writing
COBOL, PL/1 or even JCL ISPF,
are Eclipse-based editors run-
ningon a PC.

Basically, an Eclipse-based or
.NET editor offers the same functionality as ISPF and
some additional benefits like:

e Automatic code completion

e Syntaxchecking, helping you out with writing correct
code while you type

e Debugging, with step-by-step, break points, variable
inspection, etc.

e Navigation capability (click on an object, go to its
definition; find where an object is used and the hier-
archy of calls leading to it; etc.).

When using an Eclipse-based editor, the mainframe com-
plexity is completely hidden from the developers and
they can use the same Eclipse-based editor as their peer
Java developers.

Another advantage is that by using one and the same
Eclipse framework for both your mainframe and
non-mainframe development, you can save on the costs
for managing different development environments.

lielp

Columns ABAA1 ABAAA
acroll ===> C5R

File Edit MNavigate Search Project Run Window Help

| @ B0~ & Pvopy i %= Debug ([T coBoL | &' Java
5. Navigator b =0
Pl = 3 X 4 #] 6 b i i)
3 BookApp ' =] © procedure division using lnk-function -
(& settings | ink-b-details
(= MNew_Configuration.bin lnk-file-stacus.
D book.exe = main section.
] bookidy _ _ i
@ book.obj | call "CBL TOUPPER™ using lnk-b-text-details 1=
E Bkt i = by value length lnk-b-text-details =
D Bok iy returning ls-call-status
i) bool 7 £98) evaluate true
?E .coboIBull.d when read-record
._lf, «obolProj perform do-read-record
l!’f‘, praject =
Q book-rec.cpy when add-record
I book.cbl perform do-add-record
|%] BookDataxml
| B bookfile.dat = when delete-record
(B= "o \ B £ do-delete- rd
5% Outline 72 ._[Z] Program Outli | = pertom do-deleve-xzeco
-~ L Sl whan naxt-racord
35 book T perform do-next-record Y.
< b
|3 Console 52 _[21 Problems| & Tasks Fefl| 2 B-g-=0
| COBOL Build
| [cobollink] Copyright (C) Microsoft Corporation. All rights reserved. -~
[cobollink]

[cobollink] booktest.ob)

[cobollink] cblld=00001960.0b3

[cobollink] LINK : fatal srror LNK1104: cannot open file 'booktest.exe'
[cobollink] Link complete with errors

[cobollink]

1 [m]

r

Eclipse-based editor fora COBOL program]
_

File System

Non-mainframe alternative
When using an Eclipse-based
editor, the program is saved in
a standard Windows directory
or directly in a PDS through an
interface with z/0S.

On the mainframe

Once a COBOL, PL/1 or JCL code
program is developed, it needs
to be stored in a file system.
On IBM z/0S, the COBOL, PL/1
and JCL code is stored in a PDS
(Partitioned Data Set).

In Windows terminology, we talk about a file directory

A PDS contains one or more members, whereby each instead of a PDS, and members are called files. From a
member represents one file. functional point of view there is no difference.

When using ISPF as editor, each individual program is Using a Windows or Linux-based directory structure
saved in a PDS member. allows you to have one and the same file system for all

of your development, be it COBOL, PL/1 or Java, which
will be easier to manage and maintain.

Modern Mainframe development and ALM

Henu Functions Confirm Utilities Help

BROUSE
Conmand

TKANAL

>_

Hane
DEMD21
IBMPLILS
250118
uLcein
YOPa180

rompt

End:

IBM mainframe Partitioned Data Set, member list

File Edit View Tools Help
Organize » J Open Share with v E-mail Burn
AppData i MName
i3 Contacts 2] MSDCX813.chl
 Desktop %] MSDTX813.cbl
& Downloads | ®] MSE2U813.cbl
&= Dropbox | %] MSEBC813.cbl
Favorites %] MSENX813.cbl
Links @] MSEOJ813.cbl
My Documents E MSFLE13.cbl
00022AC1FC9202004501902F7E9EDOAD A MSHEX813.chl
Add-in Express %] MSHFX813.cbl
Bluetooth Exchange Folder MSHXT813.cbl
Fax 2] MSHXX813.chbl
IKANALMLATEST compare MSIGX813.chl
MetaSuite 2] MSINIZ13.cbl
CBL] MSLID813.cbl
GenFujitsu_Windows MSLOGEL3.chl
DcT] MSLS¥813.chl
MGL | 7] MSPFXB13.cbl
MRL || MSRMNXB13.chbl
TMP | 7] MSRSTB13.cbl
GenlBM_Windows MSSPX813.cbl
GenlBM_z0% || MSSQX813.cbl
GenSz_Windows MSSYX813.cbl
GenSz_z05 | 2] MSSZXB13.cbl
MDL || MSTDX813.cbl
MIL 2] MSTMX813.cbl
MM] MSTRMB813.cbl
MSP] MSTRX813.cbl
MXL || MSU2A813.cbl
sQL 7] MSU2EB13.cbl
Msgui_H_head_b542_buildHead MSXDPE13.chl
(5] My Data Sources El PPNUMVL2.CBL
s 4] PPTNUMVL.CBL

My Extracted Files

MSDCX813.cbl Date modified: 3/10/2013 18:08
) cBLFile ¢

Windows directory with one member opened

_ Modern Mainframe development and ALM

Size
5132

b44
1985
5558
1197

New folder

Date modified

EHDS. TEST. SRCBATCH

Created
c012/85/2¢
¢012785/25
c012/85/2¢
¢013/84/29
¢081/83/29

Row 88001 of B80S

acroll =

Changed
cB13/18/17 83:19:48
28127867083 0:48:48
cB13/789/21 B81:34:48
cB13/84/30 17:33:48
cBA9/84/89 11:87:48

> 15
ID
ADCDMST
ADCDMST
ADCDMST
ADCDHST
(552088

Type Size

CBL File 3 KB
CBL File 51 KB
LELEile JKE

@ EditPlus - [Ch\Usersyred\Documents\MetaSuite\GenFujitsu_Windows\TMP\MSTRME&13.chl]

File Edit View Search Document Project Tools Browser Window Help

@@ ey H| ® X | | &
L P

f 1 2 4

|
* CREATED AT 13/10/03 17:34:12

IDENTIFICATION DIVISION.
FROGRAM-ID. MSTRM813.
RUTHOR. FILIP BASTIEN.
ENVIRONMENT DIVISION.
DATA DIVISICH.
WORKING-STORAGE SECTION.

01 LEADING-SPACES-COUNTER PIC 99939
01 NEW-LEN PIC 99939
01 SIARI-FOS FIC 9993
/

LINEAGE SECTION.
01 INFUI-SIRING PIC X(l024).
01 OUTPUT-STRING PIC X(1024).
01 LEN PIC 9999 BINARY.
/
FROCEDURE DIVISION
USING INPUT-STRING, OUTFUT-STRING,
MAIN SECTION.
MAIN-00.
IF LEN > 1024
THEN
DISFLAY "THE INFUT LENGIH IS LARGER THAN 1024 CHARACTERS,™
DISPFLAY "PLERSE ADARFT PROGRREM MSTRME13 AND TABLE AVOO0OL™
MOVE 1024 TO LEN
END-IF.
MAIN-10.
MOVE ZERO I0 LEADING-SPACES-COUNTER.
INSHECT INPUT-STRING

LEN.

»
J]
1| #MSTRME13.chl
For Help, press F1

In43 coll6 60

45

Date created: 3/10/2013 18:08

m

Versioning System

On the mainframe

InaPDS, you can have one copy of
your program: when you change
and save it with the same name,
the old copy will be overwritten
and you will have no history.

Although some editors can create a backup of the file
before updating, this does not give the same functional-
ity as a proper versioning system.

On IBM z/0S, CA Librarian, CA-Panvalet, IBM SCLM, MSP
DataManager are historically the best known versioning
systems. CA-Endevor and SERENA CHANGEMAN are also
widely used for version control, offering additional con-
figuration features.

-I:}Java - Webpad/update.sql - Eclipse
File Edit Mavigate Search Project Run Window Help

Non-mainframe alternative
For non-z/OS environments,
we have IBM Clearcase, CVS,
Subversion, GIT and others.

All Eclipse-based editors have
access to version control repos-
itories. Eclipse has a “Team” function that allows you to
connect with most of the common VCRs like CVS (stan-
dard Eclipse), Subversion (subclipse, subversive), GIT, ...

Those non-z/0S based library or version control
repositories provide good alternatives for the classic
mainframe-based library or version control systems. As
CVS, Subversion and GIT are very popular in the distrib-
uted world, using these also for mainframe versioning
offers you one and the same solution for managing all
your versioning, be it for mainframe, Windows, Linux or
mobile.

=18 x|

G- MRS | $-0-Q- [86-|®0 7|85 -0~ -0 Smévonze it Repestary CoAtS s epost... 19 Java e
— < Commit... Cul4Alde
index. html - &
= %] Update Cirl+Alt+U =
e Connection profile < | Update to Revision... oz

Type: I j Name: I j Create Patch... Ctrl+Alt+P
Apply Patch... —
@OPTIONS MAIN, DLOAD, CURRENCY (), SRF (FIX) ﬁl =]
@OFTIONS SSOUT (PPTDEG)) e &
BOPTIONS NOTRUNC Add to Version Control...
IDENTIFICATION DIVISION. Add ko svmiignore. .. Chrl+Al+T
PROGRAM-ID. "HappyCO2". Edit Confiicts
@ R R AR R R AR AR R AR AR AR R R AR AR AR AR AR AR AR Edit Tres Conflicts
* METASUITE &.01.03 etk s ierged
IKAN GROUP
v 2, Branch...
* Copyright 2013. All rights reserve < Undo Typing Curl+Z
EERERRRRRRRRRR AR R R AR AR AR ARk kR R A rann RevertFie i Tag...
' . % Merge... Ctrl+Alt+E
* MODEL HappyCO2 T o i ‘;
* PROGRAM 'HappyC02' Copy CEIIC o5 Switch...
WERSICN 0001 Paste Crl+v Add Revision Link. ..
* TUPDATED BY 'IKAN‘\red')
* ON 2013-09-24 11:58:32. Toggle Comment col+/ £/ Show History
T T R L e L L LEE e, B . Show Local History
HEEUTE f Show Annotation... Crl+Alt+A
* GENERATED BY THE METASUITE GENERAT| Execute Selected Text Ak
* FMPORAR'
FOR T ¥ LICENSE XE Execute Selected Text 5 One Statement Alt+C & Lodk... Crl-+Al+HK
* _go- .
ON 2013-09-24 11:58:33. Execute Current Text Alt+5 ‘i Unlock...
HHRRR R R R R AR AR R AR R RHRRRRERRRR
Scan Locks
* GENERATION SPECIFICATIONS Save as Template, n
* : =)
GENERRTOR i 08.01.08 BUILD O by oo ooery uilder, .] 1</ Show Properties Crl+AILH
DICTICHMARY : 08.01.03 BUILD 0 Set Property...
* COBCL COMPILER : FUJITSU FOR WIND Run As Set Keywords...
* LITTLE-ENDIRN : N FRghe D Set External Definition...
* SQL DIALECT : ODEC Profile As
B T T s Validate Copy To...
ENVIRONMENT DIVISION. Team [§ (% Export...
CCNFIGURATICN SECTICN. Compare With 13
SOURCE-CCMPUTER. Replace With 3
META DEBUGGING MODE.
Preferences...
SPECIAL-NAMES. _ld
il E. Set Connection Info .
nj Database type: Undefined,not connected, Commit Mode: Auto Remove fram Context (| Bl S Do Writable Insert | 6253 J & g_k fa! @ B £0

Eclipse Team functionality

Modern Mainframe development and ALM _

Compile Procedure

Once a program (be it in COBOL, Java or.NET) is written
and added to the versioning system, it needs to be com-
piled or built. IBM z/0S uses the Job Control Language
(JCL) as a scripting language. To write JCL, you can use
ISPF, a JCL generator or, once again, an Eclipse-based

//IGYWCLG PROC LNGPRFX='IGY.V4R1IMOQ', SYSLBLK=3200,

// LIBPRFX='CEE',GOPGM=GO
ks

//* COMPILE, LINK EDIT A COBOL PROGRAM
Ji%

//* PARAMETER DEFAULT VALUE
//* LNGPREX IGY.V4R1MO

= SYSLBLK 3200

//* LIBPRFX CEE

USAGE

70 GOPGM GO

J0%

//* CALLER MUST SUPPLY //COBOL.SYSIN DD
J0%

//COBOL EXEC PGM=IGYCRCTL,REGION=2048K
//STEPLIB DD DSNAME=&LNGPRFX..SIGYCOMP,
// DISP=SHR

//SYSPRINT DD
//SYSLIN DD

SYSOUT=*
DSNAME=&&LOADSET,UNIT=SYSDA,

// DISP=(MOD,PASS),SPACE=(TRK, (3,3)),

// DCB=(BLKSIZE=&SYSLBLK)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUTS DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
(

//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))

editor. The example below is a standard example of a
JCL to compile a COBOL program. Based on a standard
script, IKAN ALM will generate the complete JCL for you
and will do the necessary to submit the JCL.

PREFIX FOR LANGUAGE DATA SET NAMES
BLKSIZE FOR OBJECT DATA SET

PREFIX FOR LIBRARY DATA SET NAMES
MEMBER NAME FOR LOAD MODULE

//LKED EXEC PGM=HEWL,COND=(8,LT,COBOL),REGION=1024K
//SYSLIB DD DSNAME=&LIBPRFX..SCEELKED,
// DISP=SHR

//SYSPRINT DD
//SYSLIN DD

SMS QU=

DSNAME=&&LOADSET, DISP=(OLD,DELETE)

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=&&GOSET (&GOPGM),SPACE=(TRK, (10,10,1)),

// UNIT=SYSDA,DISP=(MOD, PASS)

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (10,10))

//GO EXEC PGM=*.LKED.SYSLMOD,COND=((8,LT,COBOL), (4,LT,LKED)),
/! REGION=2048K

//STEPLIB DD
//

//SYSPRINT DD
//SYSUDUMP DD

DSNAME=&LIBPRFX..SCEERUN,
DISP=SHR
SYSOUT=*//CEEDUMP DD
SYSQUT=*

SYSOUT=*

n Modern Mainframe development and ALM

First conclusion

For developing mainframe-based applications you can use native mainframe tools
(ISPF, JCL, ...), but you can just as well use the same tools as Windows, .NET and

Mobile developers use:

e Eclipse-based editors for COBOL or PL/1, instead of ISPF editors,

e Standard Windows directories instead of a PDS,

e [BM ClearCase, CVS, Subversion, GIT, ... as version control

repositories,
e Antor Maven as scripting languages, instead of JCL.

Main advantage: Using the same tools, considerably low-

ers the costs of having to manage different systems.

Once the development of your COBOL, PL/1 programs is
done and your developer has committed his work to the
version control repository, IKAN ALM takes care of the next
steps in the application lifecycle: compile/build, deploy or
promote to test or production environments.

Enterprise-wide Application
Lifecycle Management

As development is just a part of the overall software
release process, a complete solution, be it for mainframe
of for a PC-based environment, should also cover the
other parts of the release process or application lifecy-
cle, and especially the deployment to the mainframe

Application Lifecycle Management, abbreviated as ALM,
refers to the capability to integrate, coordinate and
manage the different phases of the software delivery
process. From development to deployment, ALM is a set
of pre-defined processes that include definition, design,
development, testing, deployment and management.
Throughout the ALM process, each of these steps are
closely monitored and controlled.

More specifically, enterprise-wide ALM needs to offer a
solution for the following:

1. It should be able to manage different environ-
ments: the mainframe environment (Eclipse
-based or not) as well as the non-mainframe
environment, whereby also the dependencies
between those different environments managed.

In many
cases, main-
frames are used

to develop and manage the

back-end applications and the front-end applications
are being developed and managed in Java or .NET.

2. Anotherimportant point of attention is the difference
between release-based and package-based applica-
tion lifecycle approaches.

a) InaPC-based environment (Java, .NET) usually all
components of a project are taken into account
to build or promote (deploy) a release. That is the
release-based approach.

b

~

In a mainframe environment, not all COBOL pro-
grams that are part of a project are compiled,
promoted or deployed together. Only those pro-
grams and components that have changed or that
are new will be taken into account. That is the
package-based approach.

Modern Mainframe development and ALM _

Thus, to have an enterprise-wide ALM solution, you will
need a product that can handle release-based (all com-
ponents) and package-based (some components)

“releases” and this for both mainframe and non-main-
frame environments.

IKAN ALM is such a solution. It not only offers the same capabilities as mainframe-based products

O

like CA-Endevor, Serena ChangeMan or IBM SCLM, which are pure mainframe products, but on top
of that IKAN ALM is more cost-effective, straightforward to implement and manage, and supports

both mainframe and non-mainframe systems.

IKAN ALM: Bringing Both
Worlds Together

In the previous sections we explained how developers
can use an Eclipse-based editor as an alternative for ISPF
to do their work, how standard Windows directories com-
pare to a PDS, what the different alternatives for version
management are and what is generally expected from a
complete Application Lifecycle Management solution.

The next question that arises is: How does IKAN ALM,
being a web-based application, handle the Application
Lifecycle Management process for a mainframe?

IKAN ALM Overview

The graphic on the next page shows an overview of the
IKAN ALM process and its main stakeholders.

IKAN ALM offers the following key services:

e Lifecycle per project and per branch:
It is up to you to define your lifecycle(s). A classic
example is DTAP: Development, Test, Acceptance
and Production.

e Compile/Build:
IKAN ALM supports continuous integration, sched-
uled builds or builds on demand. For each Build,
IKAN ALM can give you an overview of the related
issues. Issues are entered by the developer when
committing to the VCR. IKAN ALM will synchronize
them with the Issue Tracking System.

n Modern Mainframe development and ALM

e Deploy:
Once a Build is done, IKAN ALM can deploy or pro-
mote the Build result to a next level. That next level
can be a test level or a production level.

e Phases:
The concept of phases is one of IKAN ALM’s major
assets.

Compile/Build or Deploy actions in IKAN ALM are
performed by executing a sequence of Phases, each
representing specific tasks or actions. The IKAN ALM
core functionality is performed by so-called “Core”
Phases which are read-only and form an integral
part of IKAN ALM.

Additionally, Users can create their own “Custom”
Phases which can be completely adapted to their
specific needs and environments. Phases can be
reused and shared between different Projects and
even different IKAN ALM installations.

e Approval and Notification:
Any deploy request within IKAN ALM can depend on
an approval. An email will be sent to the approver,
and the approver can then approve or disapprove.
Any request can be the subject of a notification:
through notifications you will be informed if an
action was successful or unsuccessful.

IKAN ALM
. Development Testing \cceptance

.

&

Retrieve from VCR

' and build code

Store in archive

Retrieve from
Build archive and
run deploy script

Retrieve from
Build archive and
run deploy script

Retrieve from Build/Deploy
Build archive and scripts
run deploy script

| .RELoa

Project source

REL 0.1 3 - y
o\) Project Build archive

BUILP TEST.) PROD. Release ..@ ‘7
Build script Deploy script Deploy script Deploy script Management i
(s 1)
Environments
* *
o P

Next to these key services, IKAN ALM offers: IKAN ALM Architecture
o Integration with Version Control Systems: The graphic on the next page shows the IKAN ALM

For each project you can specify the VCR to be used architecture.

by IKAN ALM. Different VCRs can be used for differ-

ent projects. o Web-based:

IKAN ALM is a web-based application. All you need is

o Integration with Issue Tracking Systems: a web browser.

IKAN ALM comes with an Issue Tracking System

plugin that you can customize to your own needs. e Agents:

IKAN ALM works with Agents: Compile/Build or

Per Build or Deploy, the related issues are displayed, Deploy requests can be executed on a local oron a

and with a simple click, the issue Tracking System remote agent.

will be opened to show all the related information.

This integration is bi-directional. e Communication:

IKAN ALM works with ftp, file copy or secured shell.
e Reporting:

IKAN ALM has an Open Source based reporting mod-
ule which is easily extendible.

Modern Mainframe development and ALM

IKAN ALM Server -y
+ IKAN ALM
Commandline I ‘ N . ¢ database
Interface < ¢ > Web Application =
+ IKAN ALM
STERNE ¢ archive
v
' I Web services Scheduler R
M
‘ : IKAN ALM
- hase catalo
VCR interface Monitor ey P g
B —

oo
JIRA -\

HP AL

cvs -\
Cleal rca"\
Subve rs’\
Subvers‘

E (Continuous) Build Server Production Server

AGENT
File Transfer Build File Transfer Build / Deploy File Transfer Deploy
mterface lnterface interface interface interface 1nterface

a..«f — l:;',‘,'{,!w ’ ANT L,uﬂ.’—;‘—’ ANT

Loy
Locatior

Collab:

Web services

Bugrill:

Conclusion

At first sight, mainframe development seems to be completely different from .NET or Java devel-
opment. In both cases, however, you need the same building blocks: a program editor, afile
system, a version control repository and a compile(build) procedure.

As technology constantly evolves and applications are more and more used on
different platforms, it becomes inevitable to combine the best of both the main-
frame and the non-mainframe world.

IKAN ALM offers an alternative for pure mainframe-based development by
combining an Eclipse-based development environment with a distributed
Version Control Repository. On top of that IKAN ALM complements the
development process with Application Lifecycle Management and Deploy
services.

IKAN ALM’s major asset is its concept of Phases. JCL can be very complicated.
By using the IKAN ALM Phases, you can easily generate and tailor any JCL step.

Thanks to the phase concept and the available models and resources, we can
also guarantee an easy and successful implementation (as an average, it will only

take a few weeks). The key requirement is for you to define your ALM process. Once

that has been established, the implementation of IKAN ALM is fast and straightforward.

n Modern Mainframe development and ALM

If you are already using a mainframe solution like
CA-Endevor or Serena ChangeMan, and you would decide
to migrate to IKAN ALM, you will of course also need to
migrate your CA-Endevor or Serena ChangeMan legacy
to IKAN ALM. To do so, we have also worked out detailed
migration procedures.

For more technical details on how IKAN ALM works
and what the different tasks are for Users, Global
Administrators and Project Managers, we refer to
our technical white paper “Integrating IKAN ALM and
Mainframes”. That document is intended for your devel-
opers, technical mainframe and/or non-mainframe
experts and software architects. We are confident that,
after having read that document, they will confirm you
the enormous advantages of putting in place our IKAN
ALM solution.

For More Information

To know more, visit http://www.ikanalm.com
Contact IKAN Development: info@ikanalm.com

Related Document

Integrating IKAN ALM and Mainframes

O

In a nutshell: by implementing IKAN ALM, you
can continue exploiting the full strengths of
your mainframe and seamlessly combine
them with new innovative tooling.

This will help you cutting down the costs of
maintaining different systems, and above all
ease the work of your developers as IKAN ALM
will take care of the different steps in your
application’s lifecycle including its deploy on
the mainframe.

UK: Visit http://www.value-4it.com
Value-4IT Email: info@value-4it.com

Modern Mainframe development and ALM _

Value-4IT Limited IKAN Development N.V.

7 Wright Road Long Buckby Schaliénhoevedreef 20 A
Northampton NN6 7GG UK

+44 (0) 845 0579386 2800 Mechelen
info@value-4it.com Tel. +32 (0)15 44 50 40
www.value-4it.com info@ikan.be

www.ikan.be
© Copyright 2013 IKAN Development N.V.

The IKAN Development and IKAN ALM logos and names and all other IKAN product or service names are

trademarks of IKAN Development N.V. All other trademarks are property of their respective owners. No
part of this document may be reproduced or transmitted in any form or by any means, electronically
or mechanically, for any purpose, without the express written permission of IKAN Development N.V.

