IBM z14: Pervasive Encryption & Container Pricing

On 17 July 2017 IBM announced the z14 server as “the next generation of the world’s most powerful transaction system, capable of running more than 12 billion encrypted transactions per day.  The new system also introduces a breakthrough encryption engine that, for the first time, makes it possible to pervasively encrypt data associated with any application, cloud service or database all the time”.

At first glance, a cursory review of the z14 announcement might just appear as another server upgrade release, but that could be a costly mistake by the reader.  There are always subtle nuisances in any technology announcement, while finding them and applying them to your own business can sometimes be a challenge.  In this particular instance, perhaps one might consider “Persuasive Encryption & Contained Pricing”…

When IBM releases a new generation of z Systems server, many of us look to the “feeds and speeds” data and ponder how that might influence our performance and capacity profiles.  IBM state the average z14 speed compared with a z13 increase by ~10% for 6-way servers and larger.  As per usual, there are software Technology Transition Offering (TTO) discounts ranging from 6% to 21% for z14 only sites.  However, in these times where workload profiles are rapidly changing and evolving, it’s sometimes easy to overlook that IBM have to consider the holistic position of the IBM Z world.  Quite simply, IBM has many divisions, Hardware, Software, Services, et al.  Therefore there has to be interaction between the hardware and software divisions and in this instance, IBM have delivered a z14 server that is security focussed, with their Pervasive Encryption functionality.

Pervasive Encryption provides a simple and transparent approach for z Systems security, enabling the highest levels of data encryption for all data usage scenarios, for example:

  • Processing: When retrieved from files and processed by applications
  • In Flight: When being transmitted over internal and external networks
  • At Rest: When stored in database structures or files
  • In Store: When stored in magnetic storage media

Pervasive Encryption simplifies and reduces costs associated when protecting data by policy (I.E. Subset) or En Masse (I.E. All Of The Data, All Of the Time), achieving compliance mandates.  When considering the EU GDPR (European Union General Data Protection Regulation) compliance mandate, companies must notify relevant parties within 72 hours of first having become aware of a personal data breach.  Additionally organizations can be fined up to 4% of annual global turnover or €20 Million (whichever is greater), for any GDPR breach unless they can demonstrate that data was encrypted and keys were protected.

To facilitate this new approach for encryption, the IBM z14 infrastructure incorporates several new capabilities integrated throughout the technology stack, including Hardware, Operating System and Middleware.  Integrated CPU chip cryptographic acceleration is enhanced, delivering ~600% increased performance when compared with its z13 predecessor and ~20 times faster than competitive server platforms.  File and data set encryption is optimized within the Operating Systems (I.E. z/OS), safeguarding transparent and optimized encryption, not impacting application functionality or performance.  Middleware software subsystems including DB2 and IMS leverage from these Pervasive Encryption techniques, safeguarding that High Availability databases can be transitioned to full encryption without stopping the database, application or subsystem.

Arguably IBM had to deliver this type of security functionality for its top tier z Systems customers, as inevitably they would be impacted by compliance mandates such as GDPR.  Conversely, the opportunity to address the majority of external hacking scenarios with one common approach is an attractive proposition.  However, as always, the devil is always in the detail, and given an impending deadline date of May 2018 for GDPR compliance, I wonder how many z Systems customers could implement the requisite z14 hardware and related Operating System (I.E. z/OS) and Subsystem (I.E. CICS, DB2, IMS, MQ, et al) .upgrades before this date?  From a bigger picture viewpoint, Pervasive Encryption does offer the requisite functionality to apply a generic end-to-end process for securing all data, especially Mission Critical data…

Previously we have considered the complexity of IBM z Systems pricing mechanisms and in theory, the z14 announcement tried to simplify some of these challenges by building upon and formalizing Container Pricing.  Container Pricing is intended to greatly simplify software pricing for qualified collocated workloads, whether collocated with other existing workloads on the same LPAR, deployed in a separate LPAR or across multiple LPARs.  Container pricing allows the specified workload to be separately priced based on a variety of metrics.  New approved z/OS workloads can be deployed collocated with other sub-capacity products (I.E. CICS, DB2, IMS, MQ, z/OS) without impacting cost profiles of existing workloads.

As per most new IBM z Systems pricing mechanisms of late, there is a commercial collaboration and exchange required between IBM and their customer.  Once a Container Pricing solution is agreed between IBM and their customer, for an agreed price, an IBM Sales order is initiated, triggering the creation of an Approved Solution ID.  The IBM provided solution ID is a 64-character string representing an approved workload with an entitled MSU capacity, representing a Full Capacity Pricing Container used for billing purposes.

Previously we considered the importance of WLM for managing z/OS workloads and its interaction with soft-capping, and this is reinforced with this latest IBM Container Pricing mechanism.  The z/OS Workload Manager (WLM) enables Container Pricing using a resource classified as the Tenant Resource Group (TRG), defining the workload in terms of address spaces and independent enclaves.  The TRG, combined with a unique Approved Solution ID, represents the IBM approved solution.  As per standard SCRT processing, workload instrumentation data is collected, safeguarding that this workload profile does not directly impact the traditional peak LPAR Rolling Four-Hour Average (R4HA).  The TRG also allows the workload to be metered and optionally capped, independent of other workloads that are running collocated in the LPAR.

MSU utilization of the defined workload is recorded by WLM and RMF, subsequently processed by SCRT to subtract the solution MSU capacity from the LPAR R4HA.  The solution can then be priced independently, based on MSU resource consumed by the workload, or based upon other non-MSU values, specifically a Business Value Metric (E.g. Number of Payments).  Therefore Container Pricing is much simpler and much more flexible than previous IBM collocated workload mechanism, namely IWP and zCAP.

Container Pricing eliminates the requirement to commission specific new environments to optimize MLC pricing.  By deploying a standard IBM process framework, new workloads can be commissioned without impacting the R4HA of collocated workloads, being deployed as per business requirements, whether on the same LPAR, a separate LPAR, or dispersed across multiple LPAR structures.  Quite simply, the standard IBM process framework is the Approved Solution ID, associating the client based z/OS system environment to the associated IBM sales contract.

In this first iteration release associated with the z14 announcement, Container Pricing can be deployed in the following three solution based scenarios:

  • Application Development and Test Solution: Add up to 3 times more capacity to existing Development and Test environments without any additional monthly licensing costs; or create new LPAR environments with competitive pricing.
  • New Application Solution: Add new z/OS microservices or applications, priced individually without impacting the cost of other workloads on the same system.
  • Payments Pricing Solution: A single agreed value based price for software plus hardware or just software, via a number of payments processed metric, based on IBM Financial Transaction Manager (FTM) software.

IBM state z14 support for a maximum 2 million Docker containers in an associated maximum 32 TB memory configuration.  In conjunction with other I/O enhancements, IBM state a z14 performance increase of ~300%, when compared with its z13 predecessor.  Historically the IBM Z platform was never envisaged as being the ideal container platform.  However, its ability to seamlessly support z/OS and Linux, while the majority of mission critical Systems Of Record (SOR) data resides on IBM Z platforms, might just be a compelling case for microservices to be processed on the IBM Z platform, minimizing any data latency transfer.

Container Pricing for z/OS is somewhat analogous to the IBM Cloud Managed Services on z Systems pricing model (I.E. CPU consumption based).  Therefore, if monthly R4HA peak processing is driven by an OLTP application, or any other workload for that matter, any additional unused capacity in that specific SCRT reporting month can be allocated for no cost to other workloads.  Therefore z/OS customers will be able to take advantage of this approach, processing collocated microservices or applications for a zero or nominal cost.

County Multiplex Pricing (CMP) Observation: The z14 is the first new generation of IBM Z hardware since the introduction of the CMP pricing mechanism.  When a client first implements a Multiplex, IBM Z server eligibility cannot be older than two generations (I.E. N-2) prior to the most recently available server (I.E. N).  Therefore the General Availability (GA) of z14, classifies the z114 and z196 servers as previously eligible CMP machines.  IBM will provide a 3 Month grace period for CMP transition activities for these N-3 servers, namely z114 and z196.  Quite simply, the first client CMP invoice must be submitted within 90 days of the z14 GA date, namely 13 September 2017, no later than 1 January 2018.

In conclusion, Pervasive Encryption is an omnipresent z14 function integrated into every data lifecycle stage, which could easily be classified as Persuasive Encryption, simplifying the sometimes arduous process of classifying and managing mission-critical data.  As cybersecurity becomes an omnipresent clear and present danger, associated with impending and increasingly punitive compliance mandates such as GDPR, the realm of possibility exists to resolve this high profile corporate challenge once and for all.

Likewise, Container Pricing provides a much needed simple-to-use framework to drive MSU cost optimization for new workloads and could easily be classified as Contained Pricing.  The committed IBM Mainframe customer will upgrade their z13 server environment to z14, as part of their periodic technology refresh approach.  Arguably, those Mainframe customers who have been somewhat hesitant in upgrading from older technology Mainframe servers, might just have a compelling reason to upgrade their environments to z14, safeguarding cybersecurity challenges and evolving processes to contain z/OS MLC costs.

z13 WLC Software Pricing Updates: Are You Ready?

Along with the z13 hardware announcement were several very obvious WLC pricing announcements, but more importantly, two hidden Statements Of Direction (SOD) or pre-announcements.

I guess we can all remember the “zSeries Technology Dividend” where put simply, when upgrading zSeries servers, users would benefit from a ~10%+ software price versus performance benefit.  Does anybody still remember the IBM Mainframe Charter from 2003?  That was the document that first referenced this price/performance benefit, which became known as the “technology dividend”.  Specifically, this document stated:

IBM lowered MSU values incorporated in the z990 microcode by approximately 10 percent, resulting in IBM software savings for IBM zSeries software products with MSU-based pricing.  These reduced MSUs do not indicate a change in machine performance. Superior performance and technology within the z990 has allowed IBM to provide improved software prices for key IBM zSeries operating system and middleware software products.

Put really simply, for z990, z9 and z10 server upgrades, IBM delivered this ~10% benefit with faster CPU chips.  Therefore, no noticeable impact on Software Pricing, Capacity Planning or Performance Measurement processes.  However, with the z196/z114, this ~10% benefit could no longer be delivered by CPU chip hardware speed enhancements.  To compensate, IBM introduced the Advanced Workload License Charges (AWLC) pricing regime.  AWLC is an evolution of the Variable (VWLC) pricing regime, lowering per MSU costs for WLC eligible products (E.g. z/OS, CICS, DB2, IMS, WebSphere/MQ, et al).  Hence delivering the ~10% price/performance benefit when upgrading from a z10 to a z196 or z114 (AEWLC) server.

Of course, when upgrading to the zEC12 or zBC12, further refinement of AWLC pricing was required, to deliver this the ~10% price/performance benefit.  Hence, IBM introduced the AWLC Technology Transition Offerings (TTO), lowering AWLC prices for zXC12 and now z13 zSeries servers.

For z13, IBM announced the following z13 AWLC Technology Transition Offerings:

  • Technology Update Pricing for the IBM z13 (TU3): When stand-alone z13 servers are priced with AWLC, or when all the servers in an aggregated Sysplex or Complex are z13 servers priced with AWLC, these servers receive a reduction to AWLC pricing which is called.  Quantity of z13 Full Capacity MSUs for a stand-alone server, or the sum of Full Capacity MSUs in an actively coupled Parallel Sysplex or Loosely Coupled Complex made up entirely of z13 servers.  AWLC discounts range from 4% (4-45 MSU) to 14% (5477+ MSU).
  • AWLC Sysplex Transition Charges (TC2): When two or more machines exist in an aggregated Sysplex or Complex & at z13, zEC12, or zBC12 server & at least one is a z196 or z114 server, with no older technology machines included, they will receive a reduction to AWLC pricing across the aggregated Sysplex or Complex. This reduction provides a portion of the benefit related to the Technology Update Pricing for AWLC (TU1) based upon the proportion of zEC12 or zBC12 server capacity in the Sysplex or Complex.  AWLC discounts range from 0.5% (0-20% z13/zXC12 MSU) to 4.5% (81%-<100% z13/zXC12 MSU).
  • AWLC Sysplex Transition Charges (TC3): When two or more machines exist in an aggregated Sysplex or Complex & at least one is a z13 server & at least one is a zEC12 or zBC12 server, with no older technology machines included, they will receive a reduction to AWLC pricing across the aggregated Sysplex or Complex. This reduction provides a portion of the benefit related to the IBM z13 TU3 offering, based on the total Full Capacity MSU of all z13, zEC12, & zBC12 Machines in the Sysplex or Complex.  AWLC discounts range from 2.8% (4-45 MSU) to 9.8% (5477+ MSU).

These AWLC software pricing announcements are Business As Usual (BAU) and to be expected, but if we dig slightly deeper into the z13 announcements, we will find two other pre-announcements of interest!

Since introducing sub-capacity and WLC pricing regimes, IBM have continually evolved zSeries software sub-capacity pricing mechanisms, with zNALC, AWLC, IWP and more recently MWP offerings.  From a generic viewpoint, with the exception of zNALC, a niche new workload price offering, these pricing announcements did not challenge the “status quo”, where aggregated MSU and large LPAR structures were the ideal.  So why might the upcoming z13 (E.g. Q2 2015) pricing announcements be of note?  Primarily because they challenge the notion of having separate structural entities (I.E. Sysplex Coupled zSeries Servers & LPARS) for existing and new workloads.

Country Multiplex Pricing (CMP): A major evolution, essentially eliminating prior Sysplex pricing rules, requiring that systems be interconnected and/or sharing the same data in order to be eligible for aggregation of MLC software pricing charges.  A Multiplex is defined as the collection of all z Systems within a country.  Therefore, sub-capacity usage will be measured & reported as a single machine, regardless of the connectivity or data sharing configurations.  A new sub-capacity reporting tool is being implemented & clients should expect a transition period as the new pricing model is implemented.  This should allow flexibility to move & run work anywhere, eradicating multiple workload peaks when workloads move between machines.  Ultimately the cost of growth is reduced with one price per product based on MLC capacity growth anywhere in the country.CMP should facilitate for flexible deployment and movement of business workloads between all zSeries Servers located within a country, without impacting MLC billing.  For the avoidance of doubt, this will assist the customer in safeguarding they don’t encounter duplicate MLC peaks as a result of moving an LPAR workload from one zSeries Server to another.  It also removes all Sysplex aggregation considerations, Single Version Charging (SVC) time limits and Cross Systems Waivers (CSW).  Most notably, the cost per MSU for additional capacity will be optimized, being based upon total Multiplex MSU capacity.

IBM Collocated Application Pricing (ICAP): Previously, new applications (zNALC) required a separate LPAR to avoid increases in other MLC software charges.  ICAP facilitates new eligible applications be charged as if they are running in a dedicated environment.  Technically they are integrated with other (non-eligible) workloads.  Software supporting the new application will not impact the charges for other MLC software collocated in the same LPAR.  ICAP appears as an evolution of the Mobile Workload Pricing (MWP) for z/OS pricing mechanism.  ICAP will use an enhanced MWRT, implemented as a z/OS application.  ICAP applies to z13, zXC12, z196/z114 servers.  IBM anticipates that ICAP will deliver zNALC type price benefit, discounting ~50% of ICAP eligible software MSU.

Seemingly IBM have learned from the lessons of IWP, where at first glance, software discounts were attractive, but not at the cost of a separate LPAR.  From a reporting viewpoint, there are similarities to Mobile Workload Pricing for z/OS (MWP), but most notably, pricing is largely zNALC based.  Therefore collocating new workloads in the same LPAR as existing workloads, but with the best price performance of any pricing regime, except zNALC, which is a niche and special edition software pricing metric.

In conclusion, CMP and ICAP are notable WLC pricing regime updates, because they do challenge the status quo of MSU aggregation via Sysplex coupled servers and the ability to collocate new and existing workloads in the same LPAR.  On the one hand, simplified pricing considerations from a granular per MSU cost viewpoint.  However, to optimize price versus performance, arguably the savvy Data Centre will now require a higher level of workload management, safeguarding optimum MSU capacity usage and associated performance.

zPrice Manager is an evolution of the typical soft-capping approach, which can be IBM function based, namely Defined Capacity (DC) or Group Capacity Limit (GCL), or ISV product based.  ISV products typically allow MSU management with dynamic MSU capacity resource management between LPAR, LPAR Group & CPC structures, ideally with Workload Manager (WLM) interaction.  If plug & play simple MSU management is required, these traditional IBM or 3rd party ISV approaches will still work with CMP and ICAP, but will they maximize WLC TCO?

The simple answer is no, because CMP allows the movement of workloads between zSeries Servers.  Therefore if WLC product (I.E. z/OS, CICS, DB2, IMS, WebSphere/MQ) pricing is to be country wide, and optimum WLM performance is to be maintained, a low level granularity of MSU management is required.

zPrice Manager from zIT Consulting allows this level of WLC software product management, with a High Level REXX programmatic interface, and the ability to store real life MSU profile data as callable REXX variables.  Similar benefits apply to ICAP workloads, where different WLM policies might be required for the same WLC product, deployed on the same collocated workload LPAR.  Therefore the savvy data centre will safeguard they optimize MSU TCO via MWP and/or ICAP pricing regimes, without impacting business application performance.

In conclusion, the typical z13 AWLC software pricing updates are Business As Usual (BAU) and can be implemented, as and when required and without consideration.  Conversely, CMP and ICAP can deliver significant future benefit and should be considered in zSeries Server capacity planning forecasts.

Bottom Line Recommendation: Each and every zSeries Server user, whether large or small, should initiate contact with their IBM account teams, for CMP and ICAP briefings, allowing them to consider how they might benefit from these new WLC software pricing regimes.

Are You Ready For z/OS Mobile Workload Pricing (MWP)?

Recently IBM announced Mobile Workload Pricing (MWP) for z/OS which can minimize the impact of mobile workloads on Sub-Capacity license charges, delivering optimized pricing for System z environments extending their workloads to incorporate mobile devices.

MWP only applies to Mainframe customers deploying a zEC12 or zBC12 in their enterprise, as per the AWLC or AEWLC (AKA Advanced/Entry Workload License Charges) metric; MWP is also extended if a zEC12 or zBC12 enterprise is deploying a z196 or z114 via the AWLC or AEWLC metric.

The primary consideration for MWP is determining how a Mainframe customer can comply with the tracking requirements for mobile workloads.  On the plus side, MWP does not require an isolation of mobile workload transactions in separate LPARs, using enhanced reporting for software pricing.  This is a major step forward when compared with Integrated Workload Pricing (IWP), which ideally requires large LPAR container structures, minimizing costs for WebSphere workloads, applying to the CICS, IMS and WebSphere MLC software products.  Conversely, MWP includes DB2 in the list of eligible software products for cost reduction.

If a Mainframe customer is eligible for MWP pricing they will then need to utilize the Mobile Workload Reporting Tool (MWRT), which is analogous to the original Sub-Capacity Reporting Tool (SCRT).  This is an either/or situation, the Mainframe customer only submits MCRT reports to IBM if they’re MWP eligible, or the status quo remains, where non-MWP Mainframe customers continue to submit SCRT reports.

The Mainframe customer must track and report General Purpose (GP) CPU time for mobile transactions, reporting those values in a pre-defined format to IBM each month to benefit from MWP.  MWRT utilizes reported mobile transaction data to adjust the Rolling 4 Hour Average (R4HA) Sub-Capacity software eligible MSUs, with LPAR granularity.  Optimizing mobile transactions impact for peak LPAR MSU values delivers benefit when higher mobile transaction volumes generate MSU resource usage peaks (Workload Spikes).

MWRT calculates the R4HA for mobile transaction GP MSU resource usage, subtracting 60% of those values from the traditional Sub-Capacity software eligible MSU metric, with LPAR granularity, for each and every reporting hour.  The software program values for the same hour are aggregated for all Sub-Capacity eligible LPARs, deriving an adjusted Sub-Capacity value for each reporting hour.  Therefore MWRT determines the billable MSU peak for a given MLC software program on a CPC using the adjusted MSU values.

Most committed zSeries Mainframe customers will be deploying CICS, DB2 and WebSphere software, while IT trends dictate that mobile device usage (I.E. Smartphone, Tablet, et al) is increasing.  Therefore most z/OS applications that require such mobile access have evolved accordingly over time.  Therefore it seems to be one of those “No Brainer” type scenarios, where the Mainframe user should plan to benefit from MWP, either as they upgrade to the latest zSeries technology, namely zEC12 or zBC12, or immediately if already deploying a zEC12 or zBC12 server.

The only minor consideration is a requirement for the zEC12 or zBC12 customer to engage their local IBM account team, to determine what data they need to report on mobile transactions for MWP consideration.  This one off task will deliver optimized WLC pricing forever more.

Of course IBM are encouraging customers to consider the Mainframe for new applications, driven by mobile transaction requirements.  Equally, there is no reason why longer term Mainframe customers can’t benefit from MWP, benefitting from reduced MLC costs, a major consideration of Mainframe TCO.

IBM Mainframe Capacity Planning & Software Cost Control Interaction?

The cost of IBM Mainframe software is an extensive subject matter that is multi-faceted and can generate much discussion. The importance of optimizing Mainframe software costs is without doubt, as it is the most significant Mainframe TCO component, having increased from ~25-50%+ of overall expenditure in the last decade or so. Conversely Mainframe server hardware costs have largely stabilized at ~15-25% of TCO in the same time period. However, Mainframe Capacity Planning activities have evolved over the last several decades or so, where hardware costs were the primary concern and the number of IBM Mainframe software pricing mechanisms was limited. Of course, in the last decade or so, IBM Mainframe software pricing mechanisms have evolved, with a plethora of acronyms, ESSO, ELA, IPLA, OIO, PSLC, WLC, VWLC, AWLC, IWP, naming but a few!

Can each and every IBM Mainframe user clearly articulate their Mainframe Capacity Planning and Software Cost Control policies, and which person in their organization performs these very important roles? Put another way, not forgetting Software Asset Management (SAM), should there be a Software Cost Control specialist for IBM Mainframe Data Centres…

If we consider the traditional Mainframe Capacity Planning role, put very simply, this process typically produces a 3-5 year rolling plan, based upon historical data and future capacity requirements. These requirements can then be modelled with the underlying hardware (E.g. z10, z114/z196, zEC12) server, identifying resource requirements accordingly, namely number of General Processors (GPs), Specialty Engines (E.g. zIIP, zAAP, IFL), Memory, Channels, et al. Previously, up until ~2005, customer requirements would be articulated to IBM, cross-referenced with LSPR (Large System Performance Reference) and an optimum hardware configuration derived. Since ~2005, IBM made their zPCR (Processor Capacity Reference) tool Generally Available, allowing the Mainframe customer to “more accurately” capacity plan for IBM zSeries servers.

Other enhancements to more accurately determine the ideal zSeries server include sizing based on actual customer usage data generated by the CPU MF facility introduced with the z10 server. CPU MF delivers a refinement when compared with LSPR, refining the zPCR process with real life customer usage data, compared to the standard simulated LSPR workloads.

In summary, the Mainframe Capacity Planning process has evolved to include new tools and data to refine the process, but primarily, the process remains the same, size the hardware based upon historical data and future business requirements. However, what about Mainframe software usage and therefore cost interaction?

Each and every IBM Mainframe user relies heavily on the IBM Operating System (I.E. z/OS, z/VM, z/VSE, zLinux, et al) and primary subsystems (I.E. CICS, DB2, MQ, IMS, et al). Some Mainframe users might deploy alternative database and transaction processing (TP) solutions, but a significant amount of Mainframe software cost is for IBM software products. In the late-1990’s, IBM introduced their PSLC (Parallel Sysplex License Charges), which offered lower aggregate (MSU) pricing for major IBM software products, based upon an eligible configuration (E.g. Resource Sharing). This pricing mechanism had no impact on software cost control, in fact quite the opposite; it was a significant cost benefit to implement PSLC!

In 2000 IBM announced Workload License Charges (WLC), which allowed users to pay for software based upon the workload size, as opposed to the capacity of the machine; thus the first signs of sub-capacity pricing. In 2001, the ability to deploy IBM eligible software on a “pay for what you use” basis was possible, as per the Variable Workload License Charge (VWLC) mechanism. Put very simply, a Rolling 4 Hour Average (R4HA) MSU metric applies for eligible IBM software products, where software is charged based upon the peak MSU usage during a calendar month. The Mainframe user pays for VWLC software based upon the R4HA or Defined Capacity (Sub-Capacity vis-à-vis Soft Capping), whichever is lowest.

From this point forward, and for the avoidance of doubt, for the last 10 years or so, there has been a mandatory requirement to consider the impact of IBM WLC software costs, when performing the Mainframe Capacity Planning activity. One must draw one’s own conclusions as to whether each and every Mainframe user has the skills to know the intricacies of the various software (E.g. IPLA, OIO, PSLC, WLC, et al) pricing models, when upgrading their zSeries server.

With the IBM Mainframe Charter in 2003, IBM stated that they would deliver a ~10% technology dividend benefit, loosely meaning that for each new Mainframe technology model (I.E. z9, z10), a lower MSU rating of 10% applied for the for the same system capacity level, when compared with the previous technology. Put another way, a potential ~10% software cost reduction for executing the same workload on a newer technology IBM Mainframe; so encouraging users to upgrade. However, the ~10% software cost reduction is subjective, because a higher installed MSU capacity dictates lower per MSU software costs…

With the introduction of the z196 and z114 Mainframe servers the technology dividend was delivered in the form of a new software license charge, AWLC (Advanced Workload License Charges), where lower software costs only applied if this new pricing model was deployed. A similar story for the zEC12 server, the AWLC pricing model is required to benefit from the lower software costs! If these software pricing evolutions were not enough, in 2011 IBM introduced the Integrated Workload Pricing (IWP) mechanism, offering potential for lower software pricing based upon workload type, namely a WebSphere eligible workload. Finally, and as previously alluded to, as MSU capacity increases, the related cost per MSU for software decreases, so there are many IBM software pricing mechanisms to consider when adding Mainframe CPU capacity. So once again, who is the IBM Mainframe Software Cost Control specialist in your organization?

For sure, each and every IBM Mainframe user will engage their IBM account team as and when they plan a Mainframe upgrade process, but how much “customer thinking is outsourced to IBM” during this process? Wouldn’t it be good if there was an internal “checks & balances” or due diligence activity that could verify and refine the Mainframe Capacity Plan with IBM software cost control intelligence?

Having travelled and worked in Europe for 20+ years, I know my peers, colleagues and friends that I have encountered can concur with my next observation. The English and Americans might come up with a good idea and perhaps product, the French are most likely to test that product to destruction and identify numerous new features, while the Germans will write the ultimate technical manual…

zCost Management are a French company that specializes in cost optimization services and solutions for the IBM Mainframe. From an IBM Mainframe Capacity Planning & Software Cost Control Interaction viewpoint, they have developed their CCP-Tool (Capacity and Cost Planning) software solution. This software product bridges the gap between Mainframe Capacity Planning for hardware and the impact on associated IBM software (E.g. WLC, IPLA, et al) costs.

CCP-Tool facilitates medium-term (E.g. 3-5 year) Mainframe Capacity Planning by controlling Monthly License Charges (MLC) evolution, generating cost control policies, optimizing zSeries (E.g. PR/SM) resource sharing, delivering financial management via IBM Mainframe software cost control activity. CCP-Tool integrates with existing data and activities, using SMF Type 70 & 89 records, defining events (I.E. Capacity Requirements, Workload Moves) in the plan, simulating many options, delivering your final capacity plan and periodically (I.E. Quarterly) reviewing and revising the plan. Most importantly, CCP-Tool deploys many algorithms and techniques aligned to IBM software pricing mechanisms, especially WLC and R4HA related.

Therefore CCP-Tool delivers a financial management framework via a medium-term Capacity Plan with associated software cost control and zSeries (E.g. PR/SM) resource policies. This enables a balanced viewpoint of future Data Centre cost configurations from both a hardware and related IBM Mainframe software viewpoint. Moreover, for those IBM Mainframe users that don’t necessarily have the skills to perform this level of Mainframe cost control, CCP-Tool delivers a low cost solution to empower the Mainframe customer to engage IBM on an equal footing, at least from a reporting viewpoint. Similarly, for those Mainframe users with good IBM Mainframe software cost control skills, CCP-Tool offers a “checks & balances” viewpoint, delivering that all important due diligence sanity check! Quite simply, CCP-Tool simplifies the process of reconciling the optimal configuration both from an IBM Mainframe hardware and related software viewpoint.

Without doubt, if a Mainframe user still deploys a hardware centric viewpoint of the capacity planning activity, without considering the numerous intricacies of IBM Mainframe software pricing, in most cases, this could be a significant cost oversight. Put very simply, a low-end IBM Mainframe user of ~150 MSU (1,000 MIPS) might spend ~£1,000,000 per annum, just for a minimal configuration of z/OS, CICS, COBOL and DB2 software, so one must draw one’s own conclusions regarding the potential cost savings, when deploying the optimal zSeries hardware and associated IBM software configuration. I paraphrase Oscar Wilde:

“The definition of a cynic is someone that knows the price of everything, and the value of nothing!”

So, let’s reprise. You have performed your Mainframe Capacity Planning activity, considered historical SMF data for CPU usage, maybe including the R4HA metric, factored in additional new and growth business requirements, refined the capacity plan by using the zPCR tool, perhaps with data input from CPU MF and you now have identified your optimum zSeries Mainframe server?

Maybe you should think again, because the numerous IBM MLC software pricing mechanisms could impact your tried and tested Mainframe CPU hardware planning process. Firstly, for MLC software, the unit cost per MSU reduces, as the installed MSU capacity increases. In simple terms, this encourages the use of “large container” processing entities, LPARs and CPCs. Other AWLC and IWP related considerations further encourages the use of major subsystems (E.g. CICS, DB2, WebSphere, IMS) in larger MSU capacity LPARs and CPCs to benefit from the lowest unit cost per MSU. Additionally, do you really need to run all software on all processing entities? For example, programming languages (E.g. COBOL, PL/I, HLASM, et al) are not necessarily required in all environments (E.g. Test, Development, Production, et al). It is not uncommon for compile and link-edit functions to be processed in Development environments only, while only run-time libraries are required for Production. These “what if” scenarios generated by the numerous IBM MLC software pricing mechanisms must be considered, ideally by an internal resource, with the requisite skills and experience.

Today, who is performing this Mainframe Software Cost Control in your organization? Is it an internal resource with the requisite skills, an independent 3rd party, IBM or nobody? One must draw one’s own conclusions as to whether any of these parties who could perform this vital activity has a vested interest or not, and thus a potential conflict of interests…