IBM Z Server: Best In Class For Availability – Does Form Factor Matter?

A recent ITIC 2017 Global Server Hardware and Server OS Reliability Survey classified the IBM Z server as delivering the highest levels of reliability/uptime, delivering ~8 Seconds or less of unplanned downtime per month.  This was the 9th consecutive year that such a statistic had been recorded for the IBM Z Mainframe platform.  This compares to ~3 Minutes of unplanned downtime per month for several other specialized server technologies, including IBM POWER, Cisco UCS and HP Integrity Superdome via the Linux Operating System.  Clearly, unplanned server downtime is undesirable and costly, impacting the bottom line of the business.  Industry Analysts state that ~80% of global business require 99.99% uptime, equating to ~52.5 Minutes downtime per year or ~8.66 Seconds per day.  In theory, only the IBM Z Mainframe platform exceeds this availability requirement, while IBM POWER, Cisco UCS and HP Integrity Superdome deliver borderline 99.99% availability capability.  The IBM Mainframe is classified as a mission-critical resource in 92 of the top 100 global banks, 23 of the top 25 USA based retailers, all 10 of the top 10 global insurance companies and 23 of the top 25 largest airlines globally…

The requirement for ever increasing amounts of corporate compute power is without doubt, satisfying the processing of ever increasing amounts of data, created from digital sources, including Cloud, Mobile and Social, requiring near real-time analytics to deliver meaningful information from these oceans of data.  Some organizations select x86 server technology to deliver this computing power requirement, either in their own Data Centre or via a 3rd party Cloud Provider.  However, with unplanned downtime characteristics that don’t meet the seeming de facto 99.99% uptime availability metric, can the growth in x86 server technology continue?  From many perspectives, Reliability, Availability & Serviceability (RAS), Data Security via Pervasive Encryption and best-in-class Performance and Scalability, you might think that the IBM Z Mainframe would be the platform of choice?  For whatever reason, this is not always the case!  Maybe we need to look at recent developments and trends in the compute power delivery market and second guess what might happen in the future…

Significant Cloud providers deliver vast amounts of computing power and associated resources, evolving their business models accordingly.  Such business models have many challenges, primarily uptime and data security related, convincing their prospective customers to migrate their workloads from traditional internal Data Centres, into these massive rack provisioned infrastructures.  Recently Google has evolved from using Intel as its primary supplier for Data Centre CPU chips, including CPU chips from IBM and other semiconductor rivals.

In April 2016, Google declared it had ported its online services to the IBM POWER CPU chip and that its toolchain could output code for Intel x86, IBM POWER and 64-bit ARM cores at the flip of a command-line switch.  As part of the OpenPOWER and Open Compute Project (OCP) initiatives, Google, IBM and Rackspace are collaborating to develop an open server specification based on the IBM POWER9 architecture.  The OCP Rack & Power Project will dictate the size and shape or form factor for housing these industry standard rack infrastructures.  What does this mean for the IBM Z server form factor?

Traditionally and over the last decade or more, IBM has utilized the 24 Inch rack form factor for the IBM Z Mainframe and Enterprise Class POWER Systems.  Of course, this is a different form factor to the industry standard 19 Inch rack, which finally became the de facto standard for the ubiquitous blade server.  Unfortunately there was no tangible standard for a 19 Inch rack, generating power, cooling and other issues.  Hence the evolution of the OCP Rack & Power Standard, codenamed Open Rack.  Google and Facebook have recently collaborated to evolve the Open Rack Standard V2.0, based upon an external 21 Inch rack Form factor, accommodating the de facto 19 Inch rack mounted equipment.

How do these recent developments influence the IBM Z platform?  If you’re the ubiquitous global CIO, knowing your organizations requires 99.99%+ uptime, delivering continuous business application change via DevOps, safeguarding corporate data with intelligent and system wide encryption, perhaps you still view the IBM Z Mainframe as a proprietary server with its own form factor?

As IBM have already demonstrated with their OpenPOWER offering, collaborating with Google and Rackspace, their 24 Inch rack approach can be evolved, becoming just another CPU chip in a Cloud (E.g. IaaS, Paas) service provider environment.  Maybe the final evolution step for the IBM Z Mainframe is evolving its form factor to a ubiquitous 19 Inch rack format?  The intelligent and clearly defined approach of the Open Rack Standard makes sense and if IBM could deliver an IBM Z Server in such a format, it just becomes another CPU chip in the ubiquitous Cloud (E.g. IaaS, Paas) service provider environment.  This might be the final piece of the jigsaw for today’s CIO as their approach to procuring compute power might be based solely upon the uptime and data security metrics.  For those organizations requiring in excess of 99.99% uptime and fully compliant security, there only seems to be one choice, the IBM Z Mainframe CPU chip technology, which has been running Linux workloads since 2000!

z/VM: The Most Flexible System z Operating System?

When considering IBM System z Operating Systems, typically z/OS is considered to be the flagship product, delivering best-of-breed features, including but not limited to, performance, reliability, availability, security, capacity, et al.  Therefore it easy to overlook the flexible virtualization capabilities of z/VM, delivering the architectural foundation for the increasingly attractive LinuxONE offering.  Quite simply, the fundamental strength of z/VM is an ability for hundreds if not thousands of virtual machines to share system resources with high levels of resource utilization.  The recent release of z/VM V6.4 provides even greater levels of scalability, security, resource optimization and efficiency to create opportunities for cost savings, while providing a robust foundation for cloud computing on z Systems servers.

Major technical highlights of z/VM 6.4 include:

  • Simultaneous MultiThreading (SMT) technology extends per-processor, core capacity growth beyond single-thread performance for Linux on z Systems running on an IBM Integrated Facility for Linux (IFL) specialty engine on a z13, z13s or LinuxONE server.
  • Enhanced Real & Guest Virtual Memory Support. The maximum amount of real storage supported by z/VM increases from 1 to 2 TB, whereas maximum supported virtual memory for a single guest remains at 1 TB.  Maintaining the virtual to real memory allocation, doubling the real memory used, results in doubling the active virtual memory that can be used effectively.  This virtual memory can be sourced from an increased number of virtual machines and/or larger virtual machines, delivering greater leverage of white space.
  • Surplus CPU Power Distribution Improvement. Virtual machines not utilizing all of their entitled CPU power, determined by their share setting, generate “surplus CPU power.”  This surplus CPU resource can be distributed to other virtual machines in proportion to their share settings, managed independently across virtual machines for each processor type, namely General Purpose (GP), zIIP, IFL, et al.
  • Guest Large Page Support. z/VM 6.4 now includes support for the Enhanced Dynamic Address Translation (DAT), allowing a guest machine to exploit large (1 MB) pages.  Larger page sizes decrease the amount of guest memory needed for DAT tables, therefore decreasing the overhead required to perform address translation.  In all cases, guest memory is mapped into 4 KB pages at the host level.

From a Linux environment viewpoint, z/VM V6.4 is a supported environment using IBM Dynamic Partition Manager for Linux-only systems with SCSI storage.  This simplifies system administration tasks for a more positive experience by those with limited System z Mainframe administration skills.  IBM Wave Version 1 Release 2 is now included in z/VM V6.4 as a priced feature, simplifying the task of administering a z/VM environment.  Using Dynamic Partition Manager, an inexperienced z/VM technician can create a z/VM partition in ~10 Minutes!

Supporting today’s agile application development and hybrid cloud implementations, z/VM and LinuxONE virtual servers can be natively managed using OpenStack open cloud architecture-based interfaces IBM OpenStack for z Systems.  OpenStack is an Infrastructure as-a Service (IaaS) cloud computing open source project, managed by the OpenStack Foundation.  With the adoption of OpenStack as part of the IBM cloud strategy, z/VM drivers provide OpenStack enablement for z/VM virtual machines running Linux on z Systems and LinuxONE.  Open standards such as OpenStack enable enterprises to be more agile, resolving potential issues such as vendor lock-in, technical expert recruitment, long application development cycles and security challenges.

The next evolution of z/VM cloud enablement technology is the OpenStack Liberty based Cloud Management Appliance (CMA), available for z/VM 6.3 and 6.4.  z/VM installations wanting to deploy cloud based solutions beyond Cloud Manager with OpenStack for z Systems, should utilize the cloud enablement support provided by the z/VM OpenStack Liberty based CMA.  This OpenStack Liberty based Cloud Management Appliance (CMA) replaces the IBM Cloud Manager with OpenStack for System z solution, withdrawn from marketing in June 2016.

The z/VM hypervisor extends the capabilities of z Systems and LinuxONE environments from the standpoint of sharing hardware assets, virtualization facilities and communication resources.  In conjunction with IBM Wave, z/VM makes it easier to derive maximum value from largescale virtual server hosting on z Systems and LinuxONE.  These benefits includes software and personnel savings, operational efficiency, power savings and optimal qualities of service.  The z/VM virtualization technology is designed to enable organizations to run hundreds to thousands of Linux servers on a single System z Mainframe footprint, alongside other System z Operating Systems, such as z/OS, z/VSE, or as a large-scale enterprise LinuxONE server solution.

Advanced virtualization features like multisystem virtualization and live guest relocation with z Systems, LinuxONE, z/VM, and Linux on z Systems or LinuxONE help to provide an efficient infrastructure for deploying private clouds to support workloads that scale both horizontally and vertically at a low total cost of ownership.

Although some might consider z/OS to be the flagship IBM system z Mainframe Operating System, arguably z/VM is the industry standard for optimal resource virtualization for numerous Operating System deployments.

IMS: The First Commercial Database Management Subsystem

If we could put a man on the Moon, could we also create a computer program to track the millions of rocket parts it takes? In 1966, the National Aeronautics and Space Administration (NASA) contractor North American Aviation (AKA Rockwell International) asked IBM that question. In response, IBM launched the world’s first commercial database management system in 1968, called the Information Control System and Data Language/Interface (ICS/DL/I). In 1969, it was renamed Information Management System (IMS).

The IMS architecture has always comprised two functions. Firstly, the database system supporting a hierarchical, tree-like structure data model (AKA IMS/DB). Secondly transaction processing software for handling complex, high-volume transactions, such as order entry, inventory management, payroll and claims processing, airline or hotel reservations, financial applications, and other transaction-oriented applications (AKA IMS/DC or IMS TM).

A unique feature of IMS is its queued system architecture, being a process that receives all transactions as they arrive and holds them until they can be processed. This allows for intelligent and commercial application processing; for example, when an airline agent enters a transaction, the automated transaction manager takes care of updating IMS, so another ticket agent doesn’t sell the same seat.

Some might say that the “business world relies on IMS” as 75+% of top Fortune 1000 companies use IMS to process more than 50 billion transactions a day, managing 15+ Million Gigabytes of mission critical business data.

From my own viewpoint, I have always enjoyed working with IMS and its arguably trail blazing functions, including but not limited to; Checkpoint Restart, Fast Path, Write Ahead Data Set (WADS), Batch Message Processing (BMP), Database Recovery Control (DBRC), et al. Whether System z or Distributed Platform product solutions or not, IMS has introduced many functions that have enhanced and optimized application processing throughout the decades. Is IMS still relevant today?

Industry analysts claim that IMS is the lowest cost transaction and hierarchical database management system for mission critical OLTP. With a TPS (Transactions Per Second) benchmark topping 117,000, IMS delivers industrial strength capabilities for managing and distributing data. IMS delivers mission critical levels of availability, performance, security and scalability. Expansive integration capabilities enable mobile and cloud applications based on IMS assets, enhanced analytics, new application development, SOA exploitation, and more.

In 2013 Gartner stated “by 2016, 40 percent of mobile application development projects will leverage cloud back-end services, causing development leaders to lose control of the pace and path of cloud adoption within their enterprises”. In this timeframe Gartner also stated “hybrid apps, which offer a balance between HTML5-based web apps and native apps, will be used in more than 50 percent of mobile apps by 2016”. Additionally, “While mobile becomes a requirement for everything, there is no single device that will meet all needs. By the end of 2013, mobile phones will overtake PCs as the most common web access device worldwide and by 2016, PC shipments will be less than 50 percent of combined PC and tablet shipments”.

As the original and ground breaking “System Of Record”, combined with industry leading OLTP performance, why wouldn’t a CIO in 2016 consider IMS as the foundation for big data and even cloud based mission critical business applications? With easy and rapid application development via solutions such as RDz and mobile application integration via z/OS Connect, accessing IMS assets has never been easier. Whatever the industry vertical, IMS has facilitated “rocket science and the man on the moon race” since day #1 in the late 1960’s, while leveraging from the unparalleled System z platform for the best scalability and performance attributes in a single footprint. A modicum of lateral thinking should consider IMS as a Service, as well as IaaS and XaaS, for resolving today’s challenges of mobile applications generating unparalleled number of transactions and associated big data requiring analytics to process rapidly evolving business requirements…