The IBM Mainframe: A Several Year Hardware Refresh Cycle?

Typically a new generation of IBM Mainframe server is released every three years or so, along with a number of function and performance upgrades.  In 2003, IBM released their Mainframe Charter that included a statement:

IBM lowered MSU values incorporated in the z990 microcode by approximately 10 percent, resulting in IBM software savings for IBM zSeries software products with MSU-based pricing.  These reduced MSUs do not indicate a change in machine performance. Superior performance and technology within the z990 has allowed IBM to provide improved software prices for key IBM zSeries operating system and middleware software products.

This terminology was named by some as the “Technology Dividend” where put simply, when upgrading IBM Mainframe servers, users would benefit from a ~10%+ software price versus performance benefit.  However, the z10 server model was the last IBM Mainframe series that benefitted from this hardware CPU chip related performance benefit.  Subsequent IBM Mainframe models have compensated for this slowing of hardware performance increase, by compensating with AWLC and AEWLC pricing models.  Therefore, unless your business has an absolute need for the “latest and greatest” IBM Mainframe server hardware, the realm of possibility exists that your business can extend the useful and cost efficient lifetime of your IBM Mainframe asset beyond the typical three year period…

As we all know, with every IT platform, there is a strong correlation between server hardware and associated Operating System.  Arguably the IBM Mainframe server has the best compatibility attribute, where there are many server hardware and Operating System interoperability scenarios.  A recent Statement Of Direction (SOD) for z/OS states:

Going forward, IBM intends to make new z/OS and z/OSMF releases available approximately every two years. Such a schedule would be intended to provide you with sufficient time to plan for new releases and to leverage them for the most business value. In addition, beginning with z/OS Version 2, IBM plans to provide five years of z/OS support, with three years of optional, fee-based extended service (5+3) as part of the new release cadence. Beginning with z/OSMF Version 2, IBM also plans to provide five years of z/OSMF support. However, similar to z/OSMF Version 1, optional extended service is not planned to be available for z/OSMF Version 2.

In addition, in z/OS V2.1, IBM plans to further leverage enhancements in the current IBM mainframe servers and storage control units. z/OS V2.1 is planned to IPL only on System z9 and later servers. Also, z/OS Version 2 is planned to require 3990 Model 3 (3990-3), 3990 Model 6 (3990-6), and later storage control units.

In attempt to simplify this scenario, in theory an IBM Mainframe customer could benefit from 5 years z/OS Version 2 support, with an IBM z9 or newer server.  In addition, this support could be extended for a further 3 years, for an extended service fee.  Therefore, from a software support perspective, there are no tangible cost considerations for extending the asset life of an IBM Mainframe from a 3 to 5 year cycle.

We must then consider the End of Marketing (EOM), also known as Withdrawal From Marketing (WDFM) and End Of Service (EOS) life cycles for the IBM Mainframe Server (Hardware).  Once again, when compared to other non-Mainframe platforms, the IBM Mainframe Server demonstrates an arguably unparalleled support cycle, where in the last 20 years or more, an average of 4.2 years sales and service, supplemented by an additional average of 7.1 years additional service applies.  Once again, as per z/OS Operating System support, the realm of possibility exists for extending the typical 3 year hardware refresh cycle to 5 years or longer.

When considering IBM Mainframe server hardware provision and support, there is one subtle difference that is not necessarily obvious, especially for those organizations that refresh their IBM Mainframe server every 3 years or so.  Clearly and stating the obvious, only IBM or a highly certified IBM System z Business partner can supply a latest generation IBM System z server or field upgrade option.  Conversely, there are a higher number of certified organizations that can provide IBM Mainframe hardware support services, allowing for a competitive and healthy 3rd party market for these services.  Additionally these companies also maintain inventories of equipment and have access to Microcode and Firmware upgrades that offer a possibility for performing field upgrades of EOM/WDFM servers.  One such company with a longevity and good track record of providing these value-added IBM Mainframe services from The United Kingdom is Blue Chip Customer Engineering.  As per any other competitive market place, arguably each and every IBM Mainframe user might consider obtaining a comparative hardware support services quotation for their business, whether they’re using the current latest and greatest IBM System z server model, or a slightly older (E.g. 4-8+ Years) model.

In conclusion, there are always options for the cost savvy business to reduce costs.  In the IBM Mainframe environment, soft capping via standard IBM Defined Capacity (DC) or Group Capacity Limit (GCL) function is an option, intelligent soft capping via a 3rd party product such as zDynaCap might be an option, or leveraging from the latest Absolute Capping IBM feature also applies.  Moreover, exploring the 3rd party hardware support services market might prove to be a very simple and commercial exercise that could decrease IBM Mainframe TCO, while extending asset life accordingly.

z13 WLC Software Pricing Updates: Are You Ready?

Along with the z13 hardware announcement were several very obvious WLC pricing announcements, but more importantly, two hidden Statements Of Direction (SOD) or pre-announcements.

I guess we can all remember the “zSeries Technology Dividend” where put simply, when upgrading zSeries servers, users would benefit from a ~10%+ software price versus performance benefit.  Does anybody still remember the IBM Mainframe Charter from 2003?  That was the document that first referenced this price/performance benefit, which became known as the “technology dividend”.  Specifically, this document stated:

IBM lowered MSU values incorporated in the z990 microcode by approximately 10 percent, resulting in IBM software savings for IBM zSeries software products with MSU-based pricing.  These reduced MSUs do not indicate a change in machine performance. Superior performance and technology within the z990 has allowed IBM to provide improved software prices for key IBM zSeries operating system and middleware software products.

Put really simply, for z990, z9 and z10 server upgrades, IBM delivered this ~10% benefit with faster CPU chips.  Therefore, no noticeable impact on Software Pricing, Capacity Planning or Performance Measurement processes.  However, with the z196/z114, this ~10% benefit could no longer be delivered by CPU chip hardware speed enhancements.  To compensate, IBM introduced the Advanced Workload License Charges (AWLC) pricing regime.  AWLC is an evolution of the Variable (VWLC) pricing regime, lowering per MSU costs for WLC eligible products (E.g. z/OS, CICS, DB2, IMS, WebSphere/MQ, et al).  Hence delivering the ~10% price/performance benefit when upgrading from a z10 to a z196 or z114 (AEWLC) server.

Of course, when upgrading to the zEC12 or zBC12, further refinement of AWLC pricing was required, to deliver this the ~10% price/performance benefit.  Hence, IBM introduced the AWLC Technology Transition Offerings (TTO), lowering AWLC prices for zXC12 and now z13 zSeries servers.

For z13, IBM announced the following z13 AWLC Technology Transition Offerings:

  • Technology Update Pricing for the IBM z13 (TU3): When stand-alone z13 servers are priced with AWLC, or when all the servers in an aggregated Sysplex or Complex are z13 servers priced with AWLC, these servers receive a reduction to AWLC pricing which is called.  Quantity of z13 Full Capacity MSUs for a stand-alone server, or the sum of Full Capacity MSUs in an actively coupled Parallel Sysplex or Loosely Coupled Complex made up entirely of z13 servers.  AWLC discounts range from 4% (4-45 MSU) to 14% (5477+ MSU).
  • AWLC Sysplex Transition Charges (TC2): When two or more machines exist in an aggregated Sysplex or Complex & at z13, zEC12, or zBC12 server & at least one is a z196 or z114 server, with no older technology machines included, they will receive a reduction to AWLC pricing across the aggregated Sysplex or Complex. This reduction provides a portion of the benefit related to the Technology Update Pricing for AWLC (TU1) based upon the proportion of zEC12 or zBC12 server capacity in the Sysplex or Complex.  AWLC discounts range from 0.5% (0-20% z13/zXC12 MSU) to 4.5% (81%-<100% z13/zXC12 MSU).
  • AWLC Sysplex Transition Charges (TC3): When two or more machines exist in an aggregated Sysplex or Complex & at least one is a z13 server & at least one is a zEC12 or zBC12 server, with no older technology machines included, they will receive a reduction to AWLC pricing across the aggregated Sysplex or Complex. This reduction provides a portion of the benefit related to the IBM z13 TU3 offering, based on the total Full Capacity MSU of all z13, zEC12, & zBC12 Machines in the Sysplex or Complex.  AWLC discounts range from 2.8% (4-45 MSU) to 9.8% (5477+ MSU).

These AWLC software pricing announcements are Business As Usual (BAU) and to be expected, but if we dig slightly deeper into the z13 announcements, we will find two other pre-announcements of interest!

Since introducing sub-capacity and WLC pricing regimes, IBM have continually evolved zSeries software sub-capacity pricing mechanisms, with zNALC, AWLC, IWP and more recently MWP offerings.  From a generic viewpoint, with the exception of zNALC, a niche new workload price offering, these pricing announcements did not challenge the “status quo”, where aggregated MSU and large LPAR structures were the ideal.  So why might the upcoming z13 (E.g. Q2 2015) pricing announcements be of note?  Primarily because they challenge the notion of having separate structural entities (I.E. Sysplex Coupled zSeries Servers & LPARS) for existing and new workloads.

Country Multiplex Pricing (CMP): A major evolution, essentially eliminating prior Sysplex pricing rules, requiring that systems be interconnected and/or sharing the same data in order to be eligible for aggregation of MLC software pricing charges.  A Multiplex is defined as the collection of all z Systems within a country.  Therefore, sub-capacity usage will be measured & reported as a single machine, regardless of the connectivity or data sharing configurations.  A new sub-capacity reporting tool is being implemented & clients should expect a transition period as the new pricing model is implemented.  This should allow flexibility to move & run work anywhere, eradicating multiple workload peaks when workloads move between machines.  Ultimately the cost of growth is reduced with one price per product based on MLC capacity growth anywhere in the country.CMP should facilitate for flexible deployment and movement of business workloads between all zSeries Servers located within a country, without impacting MLC billing.  For the avoidance of doubt, this will assist the customer in safeguarding they don’t encounter duplicate MLC peaks as a result of moving an LPAR workload from one zSeries Server to another.  It also removes all Sysplex aggregation considerations, Single Version Charging (SVC) time limits and Cross Systems Waivers (CSW).  Most notably, the cost per MSU for additional capacity will be optimized, being based upon total Multiplex MSU capacity.

IBM Collocated Application Pricing (ICAP): Previously, new applications (zNALC) required a separate LPAR to avoid increases in other MLC software charges.  ICAP facilitates new eligible applications be charged as if they are running in a dedicated environment.  Technically they are integrated with other (non-eligible) workloads.  Software supporting the new application will not impact the charges for other MLC software collocated in the same LPAR.  ICAP appears as an evolution of the Mobile Workload Pricing (MWP) for z/OS pricing mechanism.  ICAP will use an enhanced MWRT, implemented as a z/OS application.  ICAP applies to z13, zXC12, z196/z114 servers.  IBM anticipates that ICAP will deliver zNALC type price benefit, discounting ~50% of ICAP eligible software MSU.

Seemingly IBM have learned from the lessons of IWP, where at first glance, software discounts were attractive, but not at the cost of a separate LPAR.  From a reporting viewpoint, there are similarities to Mobile Workload Pricing for z/OS (MWP), but most notably, pricing is largely zNALC based.  Therefore collocating new workloads in the same LPAR as existing workloads, but with the best price performance of any pricing regime, except zNALC, which is a niche and special edition software pricing metric.

In conclusion, CMP and ICAP are notable WLC pricing regime updates, because they do challenge the status quo of MSU aggregation via Sysplex coupled servers and the ability to collocate new and existing workloads in the same LPAR.  On the one hand, simplified pricing considerations from a granular per MSU cost viewpoint.  However, to optimize price versus performance, arguably the savvy Data Centre will now require a higher level of workload management, safeguarding optimum MSU capacity usage and associated performance.

zPrice Manager is an evolution of the typical soft-capping approach, which can be IBM function based, namely Defined Capacity (DC) or Group Capacity Limit (GCL), or ISV product based.  ISV products typically allow MSU management with dynamic MSU capacity resource management between LPAR, LPAR Group & CPC structures, ideally with Workload Manager (WLM) interaction.  If plug & play simple MSU management is required, these traditional IBM or 3rd party ISV approaches will still work with CMP and ICAP, but will they maximize WLC TCO?

The simple answer is no, because CMP allows the movement of workloads between zSeries Servers.  Therefore if WLC product (I.E. z/OS, CICS, DB2, IMS, WebSphere/MQ) pricing is to be country wide, and optimum WLM performance is to be maintained, a low level granularity of MSU management is required.

zPrice Manager from zIT Consulting allows this level of WLC software product management, with a High Level REXX programmatic interface, and the ability to store real life MSU profile data as callable REXX variables.  Similar benefits apply to ICAP workloads, where different WLM policies might be required for the same WLC product, deployed on the same collocated workload LPAR.  Therefore the savvy data centre will safeguard they optimize MSU TCO via MWP and/or ICAP pricing regimes, without impacting business application performance.

In conclusion, the typical z13 AWLC software pricing updates are Business As Usual (BAU) and can be implemented, as and when required and without consideration.  Conversely, CMP and ICAP can deliver significant future benefit and should be considered in zSeries Server capacity planning forecasts.

Bottom Line Recommendation: Each and every zSeries Server user, whether large or small, should initiate contact with their IBM account teams, for CMP and ICAP briefings, allowing them to consider how they might benefit from these new WLC software pricing regimes.