Are You Ready For z Systems Workload Pricing for Cloud (zWPC) for z/OS?

Recently IBM announced the z Systems Workload Pricing for Cloud (zWPC) for z/OS pricing mechanism, which can minimize the impact of new Public Cloud workload transactions on Sub-Capacity license charges.  Such benefits will be delivered where higher Public Cloud workload transaction volumes may cause a spike in machine utilization.  Of course, if this looks familiar and you have that feeling of déjà vu, this is a very similar mechanism to Mobile Workload Pricing (MWP)…

Put simply, zWPC applies to any organization that has implemented Sub-Capacity pricing via the basic AWLC or AEWLC pricing mechanisms, for the usual MLC software suspects, namely z/OS, CICS, DB2, IMS, MQ and WebSphere Application Server (WAS).  An eligible transaction is one classified as Public Cloud originated, connecting to a z/OS hosted transactional service and/or data source via a REST or SOAP web service.  Public Cloud workloads are defined as transactions processed by named Public Cloud applications transactions identified as originating from a recognized Public Cloud offering, including but not limited to, Amazon Web Services (AWS), Microsoft Azure, IBM Bluemix, et al.

As per MWP, SCRT calculates the R4HA for Public Cloud transaction GP MSU resource usage, subtracting 60% of those values from the traditional Sub-Capacity software eligible MSU metric, with LPAR granularity, for each and every reporting hour.  The software program values for the same hour are aggregated for all Sub-Capacity eligible LPARs, deriving an adjusted Sub-Capacity value for each reporting hour.  Therefore SCRT determines the billable MSU peak for a given MLC software program on a CPC using the adjusted MSU values.  As per MWP, this will only be of benefit, if the Public Cloud originated transactions generate a spike in the current R4HA.

One of the major challenges for implementing MWP was identifying those transactions eligible for consideration.  Very quickly IBM identified this challenge and offered a WorkLoad Manager (WLM) based solution, to simplify reporting for all concerned.  This WLM SPE (OA47042), introduced a new transaction level attribute in WLM classification, allowing for identification of mobile transactions and associated processor consumption.  These Reporting Attributes were classified as NONE, MOBILE, CATEGORYA and CATEGORYB.  Obviously IBM made allowances for future workload classifications, hence it would seem Public Cloud will supplement Mobile transactions.

In a previous z/OS Workload Manager (WLM): Balancing Cost & Performance blog post, we considered the merits of WLM for optimizing z/OS software costs, while maintaining optimal performance.  One must draw one’s own conclusions, but there seemed to be a strong case for WLM reporting to be included in the z/OS MLC Cost Manager toolkit.  The introduction of zWPC, being analogous to MWP, where reporting can be simplified with supplied and supported WLM function, indicates that intelligent and proactive WLM reporting makes sense.  Certainly for 3rd party Soft-Capping solutions, the ability to identify MWP and zWPC eligible transactions in real-time, proactively implementing MSU optimization activities seems mandatory.

The Workload X-Ray (WLXR) solution from zIT Consulting delivers this WLM reporting function, seamlessly integrating with their zDynaCap and zPrice Manager MSU optimization solutions.  Of course, there is always the possibility to create your own bespoke reports to extract the relevant information from SMF records and subsystem diagnostic data, for input to the SCRT process.  However, such a home-grown process will only work on a monthly reporting basis and not integrate with any Soft-Capping MSU management, which will ultimately control z/OS MLC costs.

In conclusion, from a big picture viewpoint, in the last 2 years or so, IBM have introduced several new Sub-Capacity pricing mechanisms to help System z Mainframe users optimize z/OS MLC costs, namely Mobile Workload Pricing (MWP), Country Multiplex Pricing (CMP) and now z Systems Workload Pricing for Cloud (zWPC).  In theory, at least one of these new pricing mechanisms should deliver benefit to the committed System z user, deploying this server for strategic and Mission Critical workloads.  With the undoubted strategic importance associated with Analytics, Blockchain, Cloud, DevOps, Mobile, Social, et al, the landscape for System z workloads is rapidly evolving and potentially impacting those sacrosanct legacy Mission Critical workloads.  Seemingly the realm of possibility exists that Cloud and Mobile originated transactions will dominate access to System z Mainframe System Of Record (SOR) data repositories, which generates a requirement to optimize associated MLC costs accordingly.  Of course, for some System z users, such Cloud and Mobile access might not be on today’s to-do list, but inevitably it’s on the horizon, and so why not implement the instrumentation ability ASAP!

z/OS Workload Manager (WLM): Balancing Cost & Performance

A sophisticated mechanism is required to orchestrate the allocation of System z resources (E.g. CPU, Memory, I/O) to multiple z/OS workloads, requiring differing business processing priorities. Put very simply, a mechanism is required to translate business processing requirements (I.E. SLA) into an automated and equitable z/OS performance manager. Such a mechanism will safeguard the highest possible throughput, while delivering the best possible system responsiveness. Ideally, such a mechanism will assist in delivering this optimal performance, for the lowest cost; for z/OS, primarily Workload License Charges (WLC) related. Of course, the Workload Management (WLM) z/OS Operating System component delivers this functionality.

A rhetorical question for all z/OS Performance Managers and z/OS MLC Cost Managers would be “how much importance does your organization place on WLM and how proactively do you manage this seemingly pivotal z/OS component”? In essence, this seems like a ridiculous question, yet there is evidence that suggests many organizations, both customer and ISV alike, don’t necessarily consider WLM to be a fundamental or high priority performance management discipline. Let’s consider several reasons why WLM is a fundamental component in balancing cost and performance for each and every z/OS environment:

  • CPU (MSU) Resource Capping: Whatever the capping method (I.E. Absolute, Hard, Soft), WLM is a controlling mechanism, typically in conjunction with PR/SM, determining when capping is initiated, how it is managed and when it is terminated. Therefore from a dispassionate viewpoint, any 3rd party ISV product that performs MSU optimization via soft capping mechanisms should ideally consider the same CPU (E.g. SMF Type 70, 72, 99) instrumentation data as WLM. Some solutions don’t offer this granularity (E.g. AutoSoftCapping, iCap).
  • MLC R4HA Cost Management: WLM is the fundamental mechanism for controlling this #1 System z software TCO component; namely WLM collects 48 consecutive metric CPU MSU resource usage every 5 Minutes, commonly known as the Rolling 4 Hour Average (R4HA). In an ideal world, an optimally managed workload that generates a “valid monthly peak”, will fully utilize this “already paid for” available CPU MSU resource for the remainder of the MLC eligible month (I.E. Start of the 2nd day in a calendar month, to the end of the 1st day in the next calendar month). More recently, Country Multiplex Pricing (CMP) allows an organization to move workloads between System z server (I.E. CPC) structures, without cost consideration for cumulative R4HA peaks. Similarly, Mobile Workload Pricing (MWP) reporting will be simplified with WLM service definitions in z/OS 2.2. Therefore it seems prudent that real-time WLM management, both in terms of real-time reporting and pro-active decision making makes sense.
  • System z Server CPU Management: As System z server CPU chips evolve (E.g. CPU Chip Cache Hierarchy and Relative Nest Intensity), there are complementary changes to the z/OS Operating System management components. For example, HiperDispatch Mode delivers CPU resource usage benefit, considering CPU chip cache resources, intelligently allocating workload to as few logical processors as possible. It therefore follows that prioritization of workloads via WLM policy definitions becomes increasingly important. In this instance one might consider that CPU MF (SMF Type 113) and WLM Topology (SMF Type 99) are complementary reporting techniques for System z server design and management.

Since its announcement in September 1994 (I.E. MVS/ESA Version 5), WLM has evolved to become a fully-rounded and highly capable z/OS System Resources Manager (SRM), simply translating business prioritization policies into dynamic function, optimizing System z CPU, Memory and I/O resources. More recently, WLM continues to simplify the management of CPU chip cache hierarchy resources, while reporting abilities gain in strength, with topology reporting and the promise of simplified MWP reporting. Moreover, WLM resource management becomes more granular and seemingly the realm of possibility exists to “micro manage” System z performance, as and if required. Conversely, WLM provides the opportunity to simplify System z performance management, with intelligent workload differentiation (I.E. Subsystem Enclave, Batch, JES, USS, et al).

Quite simply, IBM are providing the instrumentation and tools for the 21st Century System z Performance and Software Cost Subject Matter Expert (SME) to deliver optimal performance for minimal cost. However, it is incumbent for each and every System z user to optimize software TCO, proactively implementing new processes and leveraging from System z functions accordingly.

Returning to that earlier rhetorical question about the importance of WLM; seemingly its importance is without doubt, primarily because of its instrumentation and management abilities of increasingly cache rich System z CPU chips and its fundamental role in controlling CPU MSU resource, vis-à-vis the R4HA.

Although IBM will provide the System z user with function to optimize system performance and cost, for obvious commercial reasons IBM will not reduce the base cost of System z MLC software. However, recent MLC pricing announcements, namely Country Multiplex Pricing (CMP), Mobile Workload Pricing (MWP) and Collocated Application Pricing (zCAP) provide tangible options to reduce System z MLC TCO. Therefore the System z user might need to consider how they can access real-time WLM performance metrics, intelligently combining this instrumentation data with function to intelligently optimize CPU MSU resource, managing the R4HA accordingly.

Workload X-Ray (WLXR) from zIT Consulting simplifies WLM performance reporting, enabling users to drill down into the root cause of performance variances in a very fast and easy way. WLXR assists in root cause problem determination by zooming in, starting from a high level overview, going right down to detailed Service Class performance information, such as the Performance Index (PI), showing potential bottleneck situations during peak time. Any system overhead considerations are limited, as WLXR delivers meaningful real time information on a “need to know” basis.

A fundamental design objective for WLXR is data reduction, only delivering the important information required for timely and professional workload management. Straight to the point information instead of data overload, sometimes from a plethora of data sources (E.g. SMF, System Monitors, et al). WLXR incorporates the following easy-to-use functions:

  • Simplified Data Collection & Storage: Minimal system overhead TCP/IP based agents periodically (E.g. 5, 15, 60 Minutes) collect CPU (Type 70) and WLM (Type 72) data. Performance data is stored centrally in near real-time, building a historical repository with intelligent analytics for meaningful information presentation.
  • Intelligent GUI Based Information Presentation: Meaningful decision based reports and graphs detailing CPU (E.g. MSU, R4HA, Weight) and WLM (E.g. Service Class, Performance Index, Response Time, Transaction Workflow) resource usage. A drill-down design provides a granularity of data presentation, for Management Summary to 3rd Level Technical Diagnostics use.
  • Corporate Identity Branding: A modular template design, allowing for easy corporate identity branding, with flexibility to easily add additional reports, as and if required.

Without doubt, WLM is a significant z/OS System Resources Management function, simplifying the translation of business workload requirements (I.E. Service Level Agreement) into timely and proactive allocation of major System z hardware resources (I.E. CPU, Memory, I/O). This management of System z resources has been forever thus for 20+ years, while WLM has always offered “software cost control” functionality, working with the various and evolving CPU capping techniques. What might not be so obvious, is that there is a WLM orientated price versus performance correlation, which has become more evident in the last 5 years or so. Whether Absolute Capping, HiperDispatch, Mobile Workload Pricing, Country Multiplex Pricing or evolving Soft Capping techniques, the need for System z users to integrate z/OS MLC pricing considerations alongside WLM performance based management is evident.

Historically there was not a clear and identified need for a z/OS Performance/Capacity Manager to consider MLC costs in their System z server designs. However, there is a clear and present danger that this historic modus operandi continues and there will only be one financial winner, namely IBM, with unnecessarily high MLC charges. Each and every System z user, whether large or small, can safeguard the longevity of their IBM Mainframe platform by recognizing and deploying proactive and current System z MLC cost management processes.

All too often it seems that capping can be envisaged as punitive, degrading system performance to reduce System z MLC costs. Such a notion needs to be consigned to history, with a focussed perspective on MSU optimization, where the valuable and granular MSU resource is allocated to the workload that requires such CPU resource, with near real-time performance profiling. If we perceive MSU optimization to be R4HA based and that IBM are increasing WLM function to assist this objective, CPU capping can be a benefit that does not adversely impact performance. As previously stated, once a valid R4HA peak has occurred, that high MSU watermark is available for the remainder of the MLC billing period. Similarly at a more granular level, once a workload has peaked and its MSU usage declines, the available MSU can be redirected to other workloads. With the introduction of Country Multiplex Pricing, System z users no longer need to concern themselves about creating a higher R4HA peak, when moving workloads between System z servers.

Quite simply, from the two most important perspectives, performance and cost optimization, WLM provides the majority of functionality to assist System z users get the best performance for the lowest cost. Analytics based products like Workload X-Ray (WLXR) assist this endeavour, analysing WLM data in near real-time from a performance and MLC cost perspective. It therefore follows that if this important information is also available for sophisticated MSU optimization solutions, which consider WLM performance (E.g. zDynaCap, zPrice Manager), then proactive performance and cost management follows. It’s hard to envisage how a fully-rounded MSU optimization decision can be implemented in near real-time, from an MSU optimization solution that does not consider WLM performance metrics…

How to Connect Mobile Workloads to System z

Despite potential security concerns, primarily data encryption and multiple-factor authentication related, mobile transactions continue to increase their share of the market, accounting for up to half of online transactions. Mobile payments now account for 30%+ of all global online transactions as of Q3 2015, continuing the upward trend experienced for the last several years. Although there are global differences in mobile transaction adoption, all global locations are experiencing rapid growth in mobile transaction adoption. Furthermore, as a general rule of thumb, seemingly ~66% of mobile transactions originate from a smartphone, a ~2:1 ratio when compared with tablet devices. Therefore it seems highly probable that smartphone originated mobile transactions will become the de facto standard for online transactions…

For System z users, the majority of their TCO continues to be IBM MLC software related and seemingly the realm of possibility exists for retail operations to reduce IBM MLC TCO as a result of modernizing their business for this mobile transaction phenomenon. Recognizing the security, scalability and transaction ability of the System z platform, why wouldn’t it be the ideal platform for mobile transactions? Furthermore, deploying mobile workloads that can take advantage of modern low cost System z pricing metrics, namely System z Collocated Application Pricing (zCAP) and Mobile Workload Pricing (MWP) for z/OS, could substantially reduce IBM MLC TCO. In theory, existing legacy applications might become somewhat static in nature, as mobile transactions replace existing traditional transaction mechanisms. Therefore the cost per business transaction reduces, potentially significantly.

So, just how easy is it to connect mobile transactions to the System z platform?

z/OS Connect is a software function engineered to leverage from the Liberty Profile for z/OS, acting as an enabler of connectivity between the mobile environment (client) and the System z platform (host). Put another way, z/OS Connect exposes System z assets for mobile and cloud workloads. Quite simply z/OS Connect delivers JSON (JavaScript Object Notation) and REST (REpresentational State Transfer) functionality to leverage from existing z/OS subsystems (E.g. CICS, IMS, Batch, et al). These traditional System z transaction systems (E.g. CICS, IMS) often integrated with DB2, are repositories for vast amounts of business transactions and data. There is no incremental cost for z/OS Connect usage, being packaged with WebSphere Application Server (WAS), CICS and IMS software products.

z/OS Connect provides a discovery function allowing developers to query services that have been configured for a z/OS Connect instance. A single z/OS Connect REST call returns a list of all configured services and another REST call will return the details of a given service. Importantly, developers only need to know the REST API service and associated JSON requirements to achieve this mobile device to System z interoperability; they do not need to know the underlying CICS or IMS subsystem. z/OS Connect incorporates a data conversion function that maps JSON to the host (I.E. CICS or IMS) data format requirement. Put really simply, when a request is received, z/OS Connect converts the data for CICS or IMS subsystem processing and when a response is produced, z/OS Connect converts the data back to JSON.

From a security viewpoint, standard or bespoke code can be used for control before and after a request is processed, identified as an interceptor. For Security, the calling user identity can be checked against defined roles, determining if they have authority to use z/OS Connect or the configured service. On z/OS the security interface is SAF, supplemented by an External Security Manager (ESM), namely ACF2, RACF or TopSecret. For Audit, request information can be logged via SMF for later analysis. Information about each request is logged, including timestamp, bytes processed, response time and USERID.

To summarize, z/OS Connect is designed to simplify the integration of mobile systems and z/OS assets. Delivering a consistent front-end interface for mobile systems via REST and JSON, z/OS Connect seamlessly integrates with WAS, CICS and IMS subsystems for data processing. In theory, a developer could code a mobile workload application, with no knowledge of the System z platform.

In conclusion, it seems we have to accept the adoption of the smartphone device for processing an ever increasing amount of online transactions. The realm of possibility exists that online transactions (click) will continue to displace traditional and legacy (brick) transactions. Therefore as businesses evolve to accommodate mobile transactions, they should strive to reduce their IBM MLC TCO accordingly, delivering JSON and REST applications that can leverage from optimal cost z/OS MLC software, primarily via the zCAP and MWP pricing mechanisms. z/OS Connect is one such option that simplifies the timely delivery of mobile workload applications.

Are You Ready For z/OS Mobile Workload Pricing (MWP)?

Recently IBM announced Mobile Workload Pricing (MWP) for z/OS which can minimize the impact of mobile workloads on Sub-Capacity license charges, delivering optimized pricing for System z environments extending their workloads to incorporate mobile devices.

MWP only applies to Mainframe customers deploying a zEC12 or zBC12 in their enterprise, as per the AWLC or AEWLC (AKA Advanced/Entry Workload License Charges) metric; MWP is also extended if a zEC12 or zBC12 enterprise is deploying a z196 or z114 via the AWLC or AEWLC metric.

The primary consideration for MWP is determining how a Mainframe customer can comply with the tracking requirements for mobile workloads.  On the plus side, MWP does not require an isolation of mobile workload transactions in separate LPARs, using enhanced reporting for software pricing.  This is a major step forward when compared with Integrated Workload Pricing (IWP), which ideally requires large LPAR container structures, minimizing costs for WebSphere workloads, applying to the CICS, IMS and WebSphere MLC software products.  Conversely, MWP includes DB2 in the list of eligible software products for cost reduction.

If a Mainframe customer is eligible for MWP pricing they will then need to utilize the Mobile Workload Reporting Tool (MWRT), which is analogous to the original Sub-Capacity Reporting Tool (SCRT).  This is an either/or situation, the Mainframe customer only submits MCRT reports to IBM if they’re MWP eligible, or the status quo remains, where non-MWP Mainframe customers continue to submit SCRT reports.

The Mainframe customer must track and report General Purpose (GP) CPU time for mobile transactions, reporting those values in a pre-defined format to IBM each month to benefit from MWP.  MWRT utilizes reported mobile transaction data to adjust the Rolling 4 Hour Average (R4HA) Sub-Capacity software eligible MSUs, with LPAR granularity.  Optimizing mobile transactions impact for peak LPAR MSU values delivers benefit when higher mobile transaction volumes generate MSU resource usage peaks (Workload Spikes).

MWRT calculates the R4HA for mobile transaction GP MSU resource usage, subtracting 60% of those values from the traditional Sub-Capacity software eligible MSU metric, with LPAR granularity, for each and every reporting hour.  The software program values for the same hour are aggregated for all Sub-Capacity eligible LPARs, deriving an adjusted Sub-Capacity value for each reporting hour.  Therefore MWRT determines the billable MSU peak for a given MLC software program on a CPC using the adjusted MSU values.

Most committed zSeries Mainframe customers will be deploying CICS, DB2 and WebSphere software, while IT trends dictate that mobile device usage (I.E. Smartphone, Tablet, et al) is increasing.  Therefore most z/OS applications that require such mobile access have evolved accordingly over time.  Therefore it seems to be one of those “No Brainer” type scenarios, where the Mainframe user should plan to benefit from MWP, either as they upgrade to the latest zSeries technology, namely zEC12 or zBC12, or immediately if already deploying a zEC12 or zBC12 server.

The only minor consideration is a requirement for the zEC12 or zBC12 customer to engage their local IBM account team, to determine what data they need to report on mobile transactions for MWP consideration.  This one off task will deliver optimized WLC pricing forever more.

Of course IBM are encouraging customers to consider the Mainframe for new applications, driven by mobile transaction requirements.  Equally, there is no reason why longer term Mainframe customers can’t benefit from MWP, benefitting from reduced MLC costs, a major consideration of Mainframe TCO.