Optimize Your System z ROI with z Operational Insights (zOI)

Hopefully all System z users are aware of the Monthly Licence Charge (MLC) pricing mechanisms, where a recurring charge applies each month.  This charge includes product usage rights and IBM product support.  If only it was that simple!  We then encounter the “Alphabet Soup” of acronyms, related to the various and arguably too numerous MLC pricing mechanism options.  Some might say that 13 is an unlucky number and in this case, a System z pricing specialist would need to know and understand each of the 13 pricing mechanisms in depth, safeguarding the lowest software pricing for their organization!  Perhaps we could apply the unlucky word to such a resource.  In alphabetical order, the 13 MLC pricing options are AWLC, AEWLC, CMLC, EWLC, MWLC, MzNALC, PSLC, SALC, S/390 Usage Pricing, ULC, WLC, zELC and zNALC!  These mechanisms are commercial considerations, but what about the technical perspective?

Of course, System z Mainframe CPU resource usage is measured in MSU metrics, where the usage of Sub-Capacity allows System z Mainframe users to submit SCRT reports, incorporating Monthly License Charges (MLC) and IPLA software maintenance, namely Subscription and Support (S&S).  We then must consider the Rolling 4-Hour Average (R4HA) and how best to optimize MSU accordingly.  At this juncture, we then need to consider how we measure the R4HA itself, in terms of performance tuning, so we can minimize the R4HA MSU usage, to optimize cost, without impacting Production if not overall system performance.

Finally, we then have to consider that WLC has a ~17-year longevity, having been announced in October 2000 and in that time IBM have also introduced hardware features to assist in MSU optimization.  These hardware features include zIIP, zAAP, IFL, while there are other influencing factors, such as HyperDispatch, WLM, Relative Nest Intensity (RNI), naming but a few!  The Alphabet Soup continues…

In summary, since the introduction of WLC in Q4 2000, the challenge for the System z user is significant.  They must collect the requisite instrumentation data, perform predictive modelling and fully comprehend the impact of the current 13 MLC pricing mechanisms and their interaction with the ever-evolving System z CPU chip!  In the absence of such a simple to use reporting capability from IBM, there are a plethora of 3rd party ISV solutions, which generally are overly complex and require numerous products, more often than not, from several ISV’s.  These software solutions process the instrumentation data, generating the requisite metrics that allows an informed decision making process.

Bottom Line: This is way too complex and are there any Green Shoots of an alternative option?  Are there any easy-to-use data analytics based options for reducing MSU usage and optimizing CPU resources, which can then be incorporated into any WLC/MLC pricing considerations?

In February 2016 IBM launched their z Operational Insights (zOI) offering, as a new open beta cloud-based service that analyses your System z monitoring data.  The zOI objective is to simplify the identification of System z inefficiencies, while identifying savings options with associated implementation recommendations. At this juncture, zOI still has a free edition available, but as of September 2016, it also has a full paid version with additional functionality.

Currently zOI is limited to the CICS subsystem, incorporating the following functions:

  • CICS Abend Analysis Report: Highlights the top 10 types of abend and the top 10 most abend transactions for your CICS workload from a frequency viewpoint. The resulting output classifies which CICS transactions might abend and as a consequence, waste processor time.  Of course, the System z Mainframe user will have to fix the underlying reason for the CICS abend!
  • CICS Java Offload Report: Highlights any transaction processing workload eligible for IBM z Systems Integrated Information Processor (zIIP) offload. The resulting output delivers three categories for consideration.  #1; % of existing workload that is eligible for offload, but ran on a General Purpose CP.  #2; % of workload being offloaded to zIIP.  #3; % of workload that cannot be transferred to a zIIP.
  • CICS Threadsafe Report: Highlights threadsafe eligible CICS transactions, calculating the switch count from the CICS Quasi Reentrant Task Control Block (QR TCB) per transaction and associated CPU cost. The resulting output identifies potential CPU savings by making programs threadsafe, with the associated CICS subsystem changes.
  • CICS Region CPU Constraint: Highlights CPU constrained regions. CPU constrained CICS regions have reduced performance, lower throughput and slower transaction response, impacting business performance (I.E. SLA, KPI).  From a high-level viewpoint, the resulting output classifies CICS Region performance to identify whether they’re LPAR or QR constrained, while suggesting possible remedial actions.

Clearly the potential of zOI is encouraging, being an easy-to-use solution that analyses instrumentation data, classifies the best options from a quick win basis, while providing recommendations for implementation.  Having been a recent user of this new technology myself, I would encourage each and every System z Mainframe user to try this no risk IBM z Operational Insights (zOI) software offering.

The evolution for all System z performance analysis software solutions is to build on the comprehensive analysis solutions that have evolved in the last ~20+ years, while incorporating intelligent analytics, to classify data in terms of “Biggest Impact”, identifying “Potential Savings”, evolving MIPS measurement, to BIPS (Biggest Impact Potential Savings) improvements!

IBM have also introduced a framework of IT Operations Analytics Solutions for z Systems.  This suite of interconnected products includes zOI, IBM Operations Analytics for z Systems, IBM Common Data Provider for z/OS and IBM Advanced Workload Analysis Reporter (IBM zAware).  Of course, if we lived in a perfect world, without a ~20 year MLC and WLC longevity, this might be the foundation for all of our System z CPU resource usage analysis.  Clearly this is not the case for the majority of System z Mainframe customers, but zOI does offer something different, with zero impact, both from a system impact and existing software interoperability viewpoint.

Bottom Line: Optimize Your System z ROI via zOI, Evolving From MIPS Measurement to BIPS Improvements!

System z MLC Pricing Increases: Look After The Pennies…

Recently IBM announced ~4% price increases in z/OS Monthly License Charges (MLC) for selected Operating System and Middleware software programs and associated features. Specifically, price increases will apply to the VWLC, AWLC, EWLC, AEWLC, PSLC, FWLC and TWLC pricing metrics. Notably, SDSF price increases will be ~20% with Advanced Function Printing (AFP) product price increases of ~13-24%. In a global economy where inflation rates for The USA and Western Europe are close to 0%, one must draw one’s own conclusions accordingly. Lets’ not forget that product version changes typically have an associated price increase. From a contractual viewpoint, IBM only have to provide 90 days advance notice for such price changes, in this instance, IBM provided 150+ days advanced notice.

Price increases are inevitable and as always, it’s better to be proactive as opposed to reactive to such changes. As always, the old proverbs always make good sense and in this instance, “look after the Pennies and the Pounds will look after themselves”! This periodic IBM price increase is inevitable, but is not the underlying issue for controlling System z software costs. For many years, since 1994 to be precise, when IBM introduced Parallel Sysplex License Charges (PSLC), the need for IBM Mainframe users to minimize MSU usage has been of high if not critical importance. Nothing has changed in this 20+ year period and even though IBM might have introduced Sub-Capacity and specialty engines to minimize chargeable MSU usage, has each and every System z user optimized their MSU usage? Ideally this would not be a rhetorical question, rather being a “Golden Rule”, where despite organic CPU capacity increases of ~10% per annum, a System z environment could maintain near static IBM MLC software costs.

I have written several blog entries and presented on this subject matter over the years, for example:

The simple bottom line is that System z MLC software accounts for ~20-35% of the overall System z TCO, typically being the #1 expenditure item. For that reason alone, it’s incumbent for each and every System z user to safeguard they have the technical and commercial skills in place to manage this cost item, not as an afterthought, but inbuilt into each and every System z process, from application design, through to that often neglected afterthought, application tuning.

Many System z organizations might try to differentiate between a nuance of System and Application tuning, but such a “not my problem” type attitude is not acceptable and will be imposing a significant financial burden on each and every organization.

A dispassionate and pragmatic approach is required for optimizing System z CPU usage. In this timeframe, let’s examine the ~20% SDSF price increase. IBM will quite rightly state that in conjunction with their z/OS 2.2 release, there are significant SDSF product function advancements, including zIIP offload, REXX interoperability and increased information delivery. However are such function improvements over and above the norm and not expected as a Business As Usual (BAU) product improvements, which should be included in the Service & Support (S&S) or Monthly License Charges (MLC) paid for software?

In October 2013 I wrote a blog entry; Mainframe ISV Software: Is Continuous Product Improvement Always Evident? The underlying message was that an ISV should deliver the best product they can, for each and every release, without necessarily increasing software costs. In this particular instance, the product was an SDSF equivalent, namely (E)JES, which many years ago delivered all of the function incorporated in SDSF for z/OS 2.2, but for a fraction of the cost…

As of 1 November 2015, IBM will start billing cycles for Country Multiplex Pricing (CMP), which requires the October 2015 version of SCRT, namely V23R10. A Multiplex is defined as a collection of all System z servers in one country, measured as one System z server for software sub-capacity reporting. Sub-Capacity program utilization peaks across the Multiplex will be measured, as opposed to separate peaks by System z servers. CMP also provides the flexibility to move and run workloads anywhere with the elimination of Sysplex aggregation pricing rules.

Migrating to CMP is focussed on CPU capacity growth and flexibility going forward. Therefore System z users should not expect price reductions for their existing workloads upon CMP deployment. Indeed there are CMP deployment considerations. A CMP MSU baseline (base) needs to be established, where this MSU Base and associated MLC Base Factor is established for each sub-capacity MLC product and each applicable feature code. These MSU and MLC bases represent the previous 3 Month averages reported by SCRT before commencing CMP. Quite simply, to gain the most from CMP, the System z user must safeguard that their R4HA for each and every MLC product is optimized, before setting the CMP baseline, otherwise CMP related cost savings going forward are likely to be null.

From a very high-level management viewpoint, we must observe that IBM are a commercial organization, and although IBM provide mechanisms for controlling cost going forward, only the System z user can optimize System z MLC cost for their organization. Arguably with CMP, Soft-Capping isn’t a consideration, it’s mandatory.

Put very simply, each and every System z user can safeguard that they look after the Pennies (Cents) and the Pounds (Euros, Dollars) will look after themselves by paying careful attention to System z MLC software costs. Setting a baseline of System z MLC costs is mandatory, whether for the first time, or to set a new baseline for CMP deployment. Maintaining or lowering this System z MLC cost baseline should or arguably must be the objective going forward, even when considering 10% organic CPU growth, each and every year. System z decision-makers and managers must commit to such an objective and safeguard the provision of adequately skilled personnel to optimize such a considerable TCO cost line item (I.E. MLC @ ~20-35% of System z TCO). In an ecosystem with technical resources including DBA, Systems Programmer, Capacity Planner, Application Personnel, Performance Tuning, et al, why wouldn’t there be a specialist Software Cost Manager?

Let’s consider how even an inexperienced System z user can maintain a baseline of System z MLC costs, even with organic CPU capacity growth of 10% per annum:

  • System z Server Upgrade: Higher specification CPU chips or Technology Transition Offering (TTO) pricing metrics deliver 10%+ cost per MSU benefits.
  • System z Specialty Engines: Over time, more and more application workload can be offloaded to zIIP processors, with no sub-capacity MLC software charges.
  • System z Software Version Upgrades: Major subsystems such as CICS, DB2, IMS, MQSeries and WebSphere deliver opportunity to lower cost per MSU; safeguard such function exploitation.
  • Application Tuning: Whether SQL, COBOL, Java, et al, or the overall I/O subsystem, safeguard that latest programming techniques and I/O subsystem functions are exploited.
  • New Application Deployment: As and when possible, deploy new or convert existing workloads to benefit from the optimal MLC pricing metric; previously zNALC, nowadays zCAP.
  • Technical & Commercial Skills Currency: Safeguard personnel have the latest System z software pricing knowledge, ideally from an independent 3rd party such as Watson & Walker.

In conclusion, as householders we have the opportunity to optimize our cost expenditure, choosing and switching between various major cost items such as financial, utility and vehicle products. As System z users, we don’t have that option, only IBM provide System z servers and associated base architecture, namely the most expensive MLC software products, z/OS, CICS, DB2, IMS and WebSphere/MQ. However, just as we manage our domestic budgets, reducing power usage, optimizing vehicle TCO and getting more bang from our buck for financial products various, we can and must deliver this same due diligence for our System z MLC TCO. With industry averages of ~$500-$1000 per MSU for z/OS MLC software and associated annual expenditure measured in many millions, why wouldn’t any System z user look to deliver 10%+ cost per MSU optimization, year-on-year for their organization?

Clearly the cost of doing nothing in this instance, is significant, measured in magnitudes of millions, each and every year. Hence for System z MLC TCO optimization, looking after the Pennies is more than worthwhile, while the associated benefit of the Pounds, Euros or Dollars looking after themselves is arguably priceless.

IBM Mainframe: Workload License Charges (WLC) Pros & Cons

It is estimated that less than half of eligible IBM Mainframe customers deploy the VWLC pricing mechanism, which in theory, is the lowest cost IBM software pricing metric.  Why?  In the first instance, let’s review the terminology…

Workload License Charges (WLC) is a monthly software license pricing metric applicable to IBM System z servers running z/OS or z/TPF in z/Architecture (64-bit) mode.  The fundamental ethos of WLC is a “pay for what you use” mechanism, allowing a lower cost of incremental growth and the potential to manage software cost by managing associated workload utilization.

WLC charges are either VWLC (Variable) or FWLC (Flat).  Not all IBM Mainframe software products are classified as VWLC eligible, but the major software is, including z/OS, CICS, DB2, IMS and WebSphere MQ, where these products are the most expensive, per MSU.  What IBM consider to be legacy products, are classified as FWLC.  More recently a modification to the VWLC mechanism was announced, namely AWLC (Advanced), strictly aligned with the latest generation of zSeries servers, namely zEC12, z196 and z114.  For the smaller user, the EWLC (Entry) mechanism applies, where AEWLC would apply for the z114 server.  There is a granular cost structure based on MSU (CPU) capacity that applies to VWLC and associated pricing mechanisms:

Band MSU Range
Base 0-3 MSU
Level 0 4-45 MSU
Level 1 46-175 MSU
Level 2 176-315 MSU
Level 3 316-575 MSU
Level 4 576-875 MSU
Level 5 876-1315 MSU
Level 6 1316-1975 MSU
Level 7 1976+ MSU

Put simply, as the MSU band increases, the related cost per MSU decreases.

IBM Mainframe users can further implement cost control by specifying how much MSU resource they use by deploying Sub-Capacity and Soft Capping techniques.  Defined Capacity (DC) allows the sizing of an LPAR in MSU, and so said LPAR will not exceed this MSU amount.  Group Capacity Limit (GCL) extends the Defined Capacity principle for a single LPAR to a group of LPARs, and so allowing MSU resource to be shared accordingly.  A potential downside of GCL is that is one LPAR of the group can consume all available MSU due to a rogue transaction (E.g. loop).

Sub-Capacity software charges are based upon LPAR hardware utilization, where the product runs, measured in hourly intervals.  To smooth out isolated usage peaks, a Rolling 4-Hour Average (R4HA) is calculated for each LPAR combination, and so software charges are based on the Monthly R4HA peak of appropriate LPAR combinations (I.E. where the software product runs) and not based on individual product measurement.

Once a Defined Capacity LPAR is deployed, this informs WLM (Workload Manager) to monitor the R4HA utilization of that LPAR.  If the LPAR R4HA utilization is less than the Defined Capacity, nothing happens.  If the LPAR R4HA utilization exceeds the Defined Capacity, then WLM signals to PR/SM and requests that Soft Capping be initiated, constraining the LPAR workload to the Defined Capacity level.

If a user chooses a Sub-Capacity WLC pricing mechanism, they will be required by IBM to submit a monthly Sub-Capacity Reporting Tool (SCRT) report.  Monthly WLC invoices are based upon hourly utilization metrics of LPAR hardware utilization, where the software product executes.  The cumulative R4HA and bottom line WLC billing metric is calculated for each product and associated LPAR group and not based on individual product measurement.

Bottom Line: From a Soft Capping viewpoint, the customer only pays for WLC software based upon the Defined Capacity (DC) or Rolling 4-Hour Average (R4HA), whichever is the lowest.  So whether a customer uses Soft Capping or not, in all likelihood, there will be occasions when their workload R4HA is lower than their zSeries server MSU capacity.

So, at first glance, VWLC seems to provide a compelling pricing metric, based upon Sub-Capacity and a pay for what you use ethos, and so why wouldn’t an IBM Mainframe user deploy this pricing metric?

The IBM Planning for Sub-Capacity Pricing (SA22-7999-0n) manual states “For IBM System z10 BC and System z9 BC environments, and z890 servers, EWLC pricing is the default for z/OS systems, and Sub-Capacity pricing is always the best option.  For IBM zEnterprise 114, environments, AEWLC pricing is the default for z/OS systems, and Sub-Capacity pricing is always the best option.  For IBM zEnterprise 196, System z10 EC and System z9 EC environments, and other zSeries servers, Sub-Capacity pricing is cost-effective for many, but not all, customers.  You might even find that Sub-Capacity pricing is cost effective for some of your CPCs, but not others (although if you want pricing aggregation, you must always use the same pricing for all the CPCs in the same sysplex)”.

Conclusion: For all small Mainframe users qualifying for the EWLC (AEWLC) pricing metric, arguably this pricing mechanism is mandatory.  For the majority of larger Mainframe users, the same applies, although a granularity of adoption might be required.  IBM also have a disclaimer “Once you decide to use Sub-Capacity pricing for a specific operating system family, you cannot return to the alternative pricing methods for that operating system family on that CPC.  For example, once you select WLC you may not switch back to PSLC without prior IBM approval”.  However, the requisite contractual exit clause option does exist; the customer can switch back to the PSLC pricing metric.

Some IBM Mainframe users might object to a notion of Soft Capping, relying upon their tried and tested methodology of LPAR management via the number of CPs allocated and associated PR/SM Weight.  This is seemingly a valid notion and requirement, prioritizing performance ahead of cost optimization.

Conclusion: As previously indicated, with VWLC, SCRT invoices are generated upon a premise of the customer only pays for WLC software based upon the Defined Capacity (DC) or Rolling 4-Hour Average (R4HA), whichever is the lowest.  So the VWLC pricing mechanism should deliver a granularity of cost savings, typically higher for a Soft Capping environment.

Some IBM Mainframe users might just believe that nothing can match their Parallel Sysplex Licensing Charge (PSLC) mechanism, first available in the late 1990’s, which might be attributable to other 3rd party ISV’s who cannot and will not allow for their software to be priced on a Sub-Capacity basis.  In reality, adopting the VWLC pricing mechanism delivers ~5% cost savings when compared with PSLC, as indicated by the IBM Planning for Sub-Capacity Pricing Manual (SA22-7999-0n) and related Sub-Capacity Planning Tool (SCPT).

Conclusion: Adopting Sub-Capacity based pricing metrics can only be a good thing.  If your 3rd party ISV supplier doesn’t recognise Sub-Capacity pricing, whether MIPS or MSU based, perhaps you should consider your relationship with them.  Regardless, the z10 server was the last IBM Mainframe to incorporate the “Technology Dividend” solely based on faster CPU chips.  The lower cost WLC pricing metric is now only available with the AWLC and related (E.g. AEWLC) pricing metrics, as per the z196, z114 and zEC12 servers.

Some customers might state that there is a lack of function or granularity of policy definition for IBM supplied Soft Capping (E.g. DC, GCL) or Workload Management (WLM) techniques.  To some extent this is a valid argument, but wasn’t it forever thus with IBM function?  Sub-Capacity implementation is possible via IBM, as is Workload Management (WLM), Soft Capping or not, but should the customer require extra functionality, 3rd party software solutions are available.

The zDynaCap software solution from zIT Consulting delivers a “Capacity Balancing” mechanism, integrating with R4HA and WLM methodologies, but constantly monitoring MSU usage to determine whether CPU resource can be reallocated to Mission & Time Critical workloads, based upon granular customer policies.  The only guarantee in a multiple LPAR environment, for a Mission & Time Critical LPAR to receive all available MSU resource, Soft Capping or not, is to inactivate all other LPARs!  Clearly this is not an acceptable policy for any installation, and so a best endeavours policy applies for PR/SM DC, GCL and Weight settings.

Conclusion: z/OS workloads change constantly, whether the time of day (E.g. On-Line, Batch) or period of the year (E.g. Weekly, Monthly, Quarterly, Yearly) or just by customer demand (E.g. 24 Hour Transaction Application).  Therefore a dynamic MSU management solution such as zDynaCap is arguably mandatory, implementing the optimum MSU management policy, whether for purely performance reasons, safeguarding the Mission & Time Critical workload isn’t impacted by lower priority workloads, or for cost reasons, optimizing MSU usage for the best possible monthly WLC cost.

In conclusion, not considering and arguably not implementing z/OS VWLC related pricing mechanisms is impractical, because:

  • The VWLC and AWLC related pricing metrics deliver the lowest cost per MSU for eligible z/OS software
  • When compared with PSLC, VWLC related pricing mechanisms deliver conservative ~5% cost savings
  • A pay for what you use and therefore Sub-Capacity pricing mechanism, not the installed MSU capacity
  • If extra MSU policy management granularity is required, consider 3rd party software such as zDynaCap

Software cost savings are not just for the privileged; they’re for everyone!