System z MLC Pricing Increases: Look After The Pennies…

Recently IBM announced ~4% price increases in z/OS Monthly License Charges (MLC) for selected Operating System and Middleware software programs and associated features. Specifically, price increases will apply to the VWLC, AWLC, EWLC, AEWLC, PSLC, FWLC and TWLC pricing metrics. Notably, SDSF price increases will be ~20% with Advanced Function Printing (AFP) product price increases of ~13-24%. In a global economy where inflation rates for The USA and Western Europe are close to 0%, one must draw one’s own conclusions accordingly. Lets’ not forget that product version changes typically have an associated price increase. From a contractual viewpoint, IBM only have to provide 90 days advance notice for such price changes, in this instance, IBM provided 150+ days advanced notice.

Price increases are inevitable and as always, it’s better to be proactive as opposed to reactive to such changes. As always, the old proverbs always make good sense and in this instance, “look after the Pennies and the Pounds will look after themselves”! This periodic IBM price increase is inevitable, but is not the underlying issue for controlling System z software costs. For many years, since 1994 to be precise, when IBM introduced Parallel Sysplex License Charges (PSLC), the need for IBM Mainframe users to minimize MSU usage has been of high if not critical importance. Nothing has changed in this 20+ year period and even though IBM might have introduced Sub-Capacity and specialty engines to minimize chargeable MSU usage, has each and every System z user optimized their MSU usage? Ideally this would not be a rhetorical question, rather being a “Golden Rule”, where despite organic CPU capacity increases of ~10% per annum, a System z environment could maintain near static IBM MLC software costs.

I have written several blog entries and presented on this subject matter over the years, for example:

The simple bottom line is that System z MLC software accounts for ~20-35% of the overall System z TCO, typically being the #1 expenditure item. For that reason alone, it’s incumbent for each and every System z user to safeguard they have the technical and commercial skills in place to manage this cost item, not as an afterthought, but inbuilt into each and every System z process, from application design, through to that often neglected afterthought, application tuning.

Many System z organizations might try to differentiate between a nuance of System and Application tuning, but such a “not my problem” type attitude is not acceptable and will be imposing a significant financial burden on each and every organization.

A dispassionate and pragmatic approach is required for optimizing System z CPU usage. In this timeframe, let’s examine the ~20% SDSF price increase. IBM will quite rightly state that in conjunction with their z/OS 2.2 release, there are significant SDSF product function advancements, including zIIP offload, REXX interoperability and increased information delivery. However are such function improvements over and above the norm and not expected as a Business As Usual (BAU) product improvements, which should be included in the Service & Support (S&S) or Monthly License Charges (MLC) paid for software?

In October 2013 I wrote a blog entry; Mainframe ISV Software: Is Continuous Product Improvement Always Evident? The underlying message was that an ISV should deliver the best product they can, for each and every release, without necessarily increasing software costs. In this particular instance, the product was an SDSF equivalent, namely (E)JES, which many years ago delivered all of the function incorporated in SDSF for z/OS 2.2, but for a fraction of the cost…

As of 1 November 2015, IBM will start billing cycles for Country Multiplex Pricing (CMP), which requires the October 2015 version of SCRT, namely V23R10. A Multiplex is defined as a collection of all System z servers in one country, measured as one System z server for software sub-capacity reporting. Sub-Capacity program utilization peaks across the Multiplex will be measured, as opposed to separate peaks by System z servers. CMP also provides the flexibility to move and run workloads anywhere with the elimination of Sysplex aggregation pricing rules.

Migrating to CMP is focussed on CPU capacity growth and flexibility going forward. Therefore System z users should not expect price reductions for their existing workloads upon CMP deployment. Indeed there are CMP deployment considerations. A CMP MSU baseline (base) needs to be established, where this MSU Base and associated MLC Base Factor is established for each sub-capacity MLC product and each applicable feature code. These MSU and MLC bases represent the previous 3 Month averages reported by SCRT before commencing CMP. Quite simply, to gain the most from CMP, the System z user must safeguard that their R4HA for each and every MLC product is optimized, before setting the CMP baseline, otherwise CMP related cost savings going forward are likely to be null.

From a very high-level management viewpoint, we must observe that IBM are a commercial organization, and although IBM provide mechanisms for controlling cost going forward, only the System z user can optimize System z MLC cost for their organization. Arguably with CMP, Soft-Capping isn’t a consideration, it’s mandatory.

Put very simply, each and every System z user can safeguard that they look after the Pennies (Cents) and the Pounds (Euros, Dollars) will look after themselves by paying careful attention to System z MLC software costs. Setting a baseline of System z MLC costs is mandatory, whether for the first time, or to set a new baseline for CMP deployment. Maintaining or lowering this System z MLC cost baseline should or arguably must be the objective going forward, even when considering 10% organic CPU growth, each and every year. System z decision-makers and managers must commit to such an objective and safeguard the provision of adequately skilled personnel to optimize such a considerable TCO cost line item (I.E. MLC @ ~20-35% of System z TCO). In an ecosystem with technical resources including DBA, Systems Programmer, Capacity Planner, Application Personnel, Performance Tuning, et al, why wouldn’t there be a specialist Software Cost Manager?

Let’s consider how even an inexperienced System z user can maintain a baseline of System z MLC costs, even with organic CPU capacity growth of 10% per annum:

  • System z Server Upgrade: Higher specification CPU chips or Technology Transition Offering (TTO) pricing metrics deliver 10%+ cost per MSU benefits.
  • System z Specialty Engines: Over time, more and more application workload can be offloaded to zIIP processors, with no sub-capacity MLC software charges.
  • System z Software Version Upgrades: Major subsystems such as CICS, DB2, IMS, MQSeries and WebSphere deliver opportunity to lower cost per MSU; safeguard such function exploitation.
  • Application Tuning: Whether SQL, COBOL, Java, et al, or the overall I/O subsystem, safeguard that latest programming techniques and I/O subsystem functions are exploited.
  • New Application Deployment: As and when possible, deploy new or convert existing workloads to benefit from the optimal MLC pricing metric; previously zNALC, nowadays zCAP.
  • Technical & Commercial Skills Currency: Safeguard personnel have the latest System z software pricing knowledge, ideally from an independent 3rd party such as Watson & Walker.

In conclusion, as householders we have the opportunity to optimize our cost expenditure, choosing and switching between various major cost items such as financial, utility and vehicle products. As System z users, we don’t have that option, only IBM provide System z servers and associated base architecture, namely the most expensive MLC software products, z/OS, CICS, DB2, IMS and WebSphere/MQ. However, just as we manage our domestic budgets, reducing power usage, optimizing vehicle TCO and getting more bang from our buck for financial products various, we can and must deliver this same due diligence for our System z MLC TCO. With industry averages of ~$500-$1000 per MSU for z/OS MLC software and associated annual expenditure measured in many millions, why wouldn’t any System z user look to deliver 10%+ cost per MSU optimization, year-on-year for their organization?

Clearly the cost of doing nothing in this instance, is significant, measured in magnitudes of millions, each and every year. Hence for System z MLC TCO optimization, looking after the Pennies is more than worthwhile, while the associated benefit of the Pounds, Euros or Dollars looking after themselves is arguably priceless.

IBM Mainframe: Workload License Charges (WLC) Pros & Cons

It is estimated that less than half of eligible IBM Mainframe customers deploy the VWLC pricing mechanism, which in theory, is the lowest cost IBM software pricing metric.  Why?  In the first instance, let’s review the terminology…

Workload License Charges (WLC) is a monthly software license pricing metric applicable to IBM System z servers running z/OS or z/TPF in z/Architecture (64-bit) mode.  The fundamental ethos of WLC is a “pay for what you use” mechanism, allowing a lower cost of incremental growth and the potential to manage software cost by managing associated workload utilization.

WLC charges are either VWLC (Variable) or FWLC (Flat).  Not all IBM Mainframe software products are classified as VWLC eligible, but the major software is, including z/OS, CICS, DB2, IMS and WebSphere MQ, where these products are the most expensive, per MSU.  What IBM consider to be legacy products, are classified as FWLC.  More recently a modification to the VWLC mechanism was announced, namely AWLC (Advanced), strictly aligned with the latest generation of zSeries servers, namely zEC12, z196 and z114.  For the smaller user, the EWLC (Entry) mechanism applies, where AEWLC would apply for the z114 server.  There is a granular cost structure based on MSU (CPU) capacity that applies to VWLC and associated pricing mechanisms:

Band MSU Range
Base 0-3 MSU
Level 0 4-45 MSU
Level 1 46-175 MSU
Level 2 176-315 MSU
Level 3 316-575 MSU
Level 4 576-875 MSU
Level 5 876-1315 MSU
Level 6 1316-1975 MSU
Level 7 1976+ MSU

Put simply, as the MSU band increases, the related cost per MSU decreases.

IBM Mainframe users can further implement cost control by specifying how much MSU resource they use by deploying Sub-Capacity and Soft Capping techniques.  Defined Capacity (DC) allows the sizing of an LPAR in MSU, and so said LPAR will not exceed this MSU amount.  Group Capacity Limit (GCL) extends the Defined Capacity principle for a single LPAR to a group of LPARs, and so allowing MSU resource to be shared accordingly.  A potential downside of GCL is that is one LPAR of the group can consume all available MSU due to a rogue transaction (E.g. loop).

Sub-Capacity software charges are based upon LPAR hardware utilization, where the product runs, measured in hourly intervals.  To smooth out isolated usage peaks, a Rolling 4-Hour Average (R4HA) is calculated for each LPAR combination, and so software charges are based on the Monthly R4HA peak of appropriate LPAR combinations (I.E. where the software product runs) and not based on individual product measurement.

Once a Defined Capacity LPAR is deployed, this informs WLM (Workload Manager) to monitor the R4HA utilization of that LPAR.  If the LPAR R4HA utilization is less than the Defined Capacity, nothing happens.  If the LPAR R4HA utilization exceeds the Defined Capacity, then WLM signals to PR/SM and requests that Soft Capping be initiated, constraining the LPAR workload to the Defined Capacity level.

If a user chooses a Sub-Capacity WLC pricing mechanism, they will be required by IBM to submit a monthly Sub-Capacity Reporting Tool (SCRT) report.  Monthly WLC invoices are based upon hourly utilization metrics of LPAR hardware utilization, where the software product executes.  The cumulative R4HA and bottom line WLC billing metric is calculated for each product and associated LPAR group and not based on individual product measurement.

Bottom Line: From a Soft Capping viewpoint, the customer only pays for WLC software based upon the Defined Capacity (DC) or Rolling 4-Hour Average (R4HA), whichever is the lowest.  So whether a customer uses Soft Capping or not, in all likelihood, there will be occasions when their workload R4HA is lower than their zSeries server MSU capacity.

So, at first glance, VWLC seems to provide a compelling pricing metric, based upon Sub-Capacity and a pay for what you use ethos, and so why wouldn’t an IBM Mainframe user deploy this pricing metric?

The IBM Planning for Sub-Capacity Pricing (SA22-7999-0n) manual states “For IBM System z10 BC and System z9 BC environments, and z890 servers, EWLC pricing is the default for z/OS systems, and Sub-Capacity pricing is always the best option.  For IBM zEnterprise 114, environments, AEWLC pricing is the default for z/OS systems, and Sub-Capacity pricing is always the best option.  For IBM zEnterprise 196, System z10 EC and System z9 EC environments, and other zSeries servers, Sub-Capacity pricing is cost-effective for many, but not all, customers.  You might even find that Sub-Capacity pricing is cost effective for some of your CPCs, but not others (although if you want pricing aggregation, you must always use the same pricing for all the CPCs in the same sysplex)”.

Conclusion: For all small Mainframe users qualifying for the EWLC (AEWLC) pricing metric, arguably this pricing mechanism is mandatory.  For the majority of larger Mainframe users, the same applies, although a granularity of adoption might be required.  IBM also have a disclaimer “Once you decide to use Sub-Capacity pricing for a specific operating system family, you cannot return to the alternative pricing methods for that operating system family on that CPC.  For example, once you select WLC you may not switch back to PSLC without prior IBM approval”.  However, the requisite contractual exit clause option does exist; the customer can switch back to the PSLC pricing metric.

Some IBM Mainframe users might object to a notion of Soft Capping, relying upon their tried and tested methodology of LPAR management via the number of CPs allocated and associated PR/SM Weight.  This is seemingly a valid notion and requirement, prioritizing performance ahead of cost optimization.

Conclusion: As previously indicated, with VWLC, SCRT invoices are generated upon a premise of the customer only pays for WLC software based upon the Defined Capacity (DC) or Rolling 4-Hour Average (R4HA), whichever is the lowest.  So the VWLC pricing mechanism should deliver a granularity of cost savings, typically higher for a Soft Capping environment.

Some IBM Mainframe users might just believe that nothing can match their Parallel Sysplex Licensing Charge (PSLC) mechanism, first available in the late 1990’s, which might be attributable to other 3rd party ISV’s who cannot and will not allow for their software to be priced on a Sub-Capacity basis.  In reality, adopting the VWLC pricing mechanism delivers ~5% cost savings when compared with PSLC, as indicated by the IBM Planning for Sub-Capacity Pricing Manual (SA22-7999-0n) and related Sub-Capacity Planning Tool (SCPT).

Conclusion: Adopting Sub-Capacity based pricing metrics can only be a good thing.  If your 3rd party ISV supplier doesn’t recognise Sub-Capacity pricing, whether MIPS or MSU based, perhaps you should consider your relationship with them.  Regardless, the z10 server was the last IBM Mainframe to incorporate the “Technology Dividend” solely based on faster CPU chips.  The lower cost WLC pricing metric is now only available with the AWLC and related (E.g. AEWLC) pricing metrics, as per the z196, z114 and zEC12 servers.

Some customers might state that there is a lack of function or granularity of policy definition for IBM supplied Soft Capping (E.g. DC, GCL) or Workload Management (WLM) techniques.  To some extent this is a valid argument, but wasn’t it forever thus with IBM function?  Sub-Capacity implementation is possible via IBM, as is Workload Management (WLM), Soft Capping or not, but should the customer require extra functionality, 3rd party software solutions are available.

The zDynaCap software solution from zIT Consulting delivers a “Capacity Balancing” mechanism, integrating with R4HA and WLM methodologies, but constantly monitoring MSU usage to determine whether CPU resource can be reallocated to Mission & Time Critical workloads, based upon granular customer policies.  The only guarantee in a multiple LPAR environment, for a Mission & Time Critical LPAR to receive all available MSU resource, Soft Capping or not, is to inactivate all other LPARs!  Clearly this is not an acceptable policy for any installation, and so a best endeavours policy applies for PR/SM DC, GCL and Weight settings.

Conclusion: z/OS workloads change constantly, whether the time of day (E.g. On-Line, Batch) or period of the year (E.g. Weekly, Monthly, Quarterly, Yearly) or just by customer demand (E.g. 24 Hour Transaction Application).  Therefore a dynamic MSU management solution such as zDynaCap is arguably mandatory, implementing the optimum MSU management policy, whether for purely performance reasons, safeguarding the Mission & Time Critical workload isn’t impacted by lower priority workloads, or for cost reasons, optimizing MSU usage for the best possible monthly WLC cost.

In conclusion, not considering and arguably not implementing z/OS VWLC related pricing mechanisms is impractical, because:

  • The VWLC and AWLC related pricing metrics deliver the lowest cost per MSU for eligible z/OS software
  • When compared with PSLC, VWLC related pricing mechanisms deliver conservative ~5% cost savings
  • A pay for what you use and therefore Sub-Capacity pricing mechanism, not the installed MSU capacity
  • If extra MSU policy management granularity is required, consider 3rd party software such as zDynaCap

Software cost savings are not just for the privileged; they’re for everyone!

IBM Mainframe Capacity Planning & Software Cost Control Interaction?

The cost of IBM Mainframe software is an extensive subject matter that is multi-faceted and can generate much discussion. The importance of optimizing Mainframe software costs is without doubt, as it is the most significant Mainframe TCO component, having increased from ~25-50%+ of overall expenditure in the last decade or so. Conversely Mainframe server hardware costs have largely stabilized at ~15-25% of TCO in the same time period. However, Mainframe Capacity Planning activities have evolved over the last several decades or so, where hardware costs were the primary concern and the number of IBM Mainframe software pricing mechanisms was limited. Of course, in the last decade or so, IBM Mainframe software pricing mechanisms have evolved, with a plethora of acronyms, ESSO, ELA, IPLA, OIO, PSLC, WLC, VWLC, AWLC, IWP, naming but a few!

Can each and every IBM Mainframe user clearly articulate their Mainframe Capacity Planning and Software Cost Control policies, and which person in their organization performs these very important roles? Put another way, not forgetting Software Asset Management (SAM), should there be a Software Cost Control specialist for IBM Mainframe Data Centres…

If we consider the traditional Mainframe Capacity Planning role, put very simply, this process typically produces a 3-5 year rolling plan, based upon historical data and future capacity requirements. These requirements can then be modelled with the underlying hardware (E.g. z10, z114/z196, zEC12) server, identifying resource requirements accordingly, namely number of General Processors (GPs), Specialty Engines (E.g. zIIP, zAAP, IFL), Memory, Channels, et al. Previously, up until ~2005, customer requirements would be articulated to IBM, cross-referenced with LSPR (Large System Performance Reference) and an optimum hardware configuration derived. Since ~2005, IBM made their zPCR (Processor Capacity Reference) tool Generally Available, allowing the Mainframe customer to “more accurately” capacity plan for IBM zSeries servers.

Other enhancements to more accurately determine the ideal zSeries server include sizing based on actual customer usage data generated by the CPU MF facility introduced with the z10 server. CPU MF delivers a refinement when compared with LSPR, refining the zPCR process with real life customer usage data, compared to the standard simulated LSPR workloads.

In summary, the Mainframe Capacity Planning process has evolved to include new tools and data to refine the process, but primarily, the process remains the same, size the hardware based upon historical data and future business requirements. However, what about Mainframe software usage and therefore cost interaction?

Each and every IBM Mainframe user relies heavily on the IBM Operating System (I.E. z/OS, z/VM, z/VSE, zLinux, et al) and primary subsystems (I.E. CICS, DB2, MQ, IMS, et al). Some Mainframe users might deploy alternative database and transaction processing (TP) solutions, but a significant amount of Mainframe software cost is for IBM software products. In the late-1990’s, IBM introduced their PSLC (Parallel Sysplex License Charges), which offered lower aggregate (MSU) pricing for major IBM software products, based upon an eligible configuration (E.g. Resource Sharing). This pricing mechanism had no impact on software cost control, in fact quite the opposite; it was a significant cost benefit to implement PSLC!

In 2000 IBM announced Workload License Charges (WLC), which allowed users to pay for software based upon the workload size, as opposed to the capacity of the machine; thus the first signs of sub-capacity pricing. In 2001, the ability to deploy IBM eligible software on a “pay for what you use” basis was possible, as per the Variable Workload License Charge (VWLC) mechanism. Put very simply, a Rolling 4 Hour Average (R4HA) MSU metric applies for eligible IBM software products, where software is charged based upon the peak MSU usage during a calendar month. The Mainframe user pays for VWLC software based upon the R4HA or Defined Capacity (Sub-Capacity vis-à-vis Soft Capping), whichever is lowest.

From this point forward, and for the avoidance of doubt, for the last 10 years or so, there has been a mandatory requirement to consider the impact of IBM WLC software costs, when performing the Mainframe Capacity Planning activity. One must draw one’s own conclusions as to whether each and every Mainframe user has the skills to know the intricacies of the various software (E.g. IPLA, OIO, PSLC, WLC, et al) pricing models, when upgrading their zSeries server.

With the IBM Mainframe Charter in 2003, IBM stated that they would deliver a ~10% technology dividend benefit, loosely meaning that for each new Mainframe technology model (I.E. z9, z10), a lower MSU rating of 10% applied for the for the same system capacity level, when compared with the previous technology. Put another way, a potential ~10% software cost reduction for executing the same workload on a newer technology IBM Mainframe; so encouraging users to upgrade. However, the ~10% software cost reduction is subjective, because a higher installed MSU capacity dictates lower per MSU software costs…

With the introduction of the z196 and z114 Mainframe servers the technology dividend was delivered in the form of a new software license charge, AWLC (Advanced Workload License Charges), where lower software costs only applied if this new pricing model was deployed. A similar story for the zEC12 server, the AWLC pricing model is required to benefit from the lower software costs! If these software pricing evolutions were not enough, in 2011 IBM introduced the Integrated Workload Pricing (IWP) mechanism, offering potential for lower software pricing based upon workload type, namely a WebSphere eligible workload. Finally, and as previously alluded to, as MSU capacity increases, the related cost per MSU for software decreases, so there are many IBM software pricing mechanisms to consider when adding Mainframe CPU capacity. So once again, who is the IBM Mainframe Software Cost Control specialist in your organization?

For sure, each and every IBM Mainframe user will engage their IBM account team as and when they plan a Mainframe upgrade process, but how much “customer thinking is outsourced to IBM” during this process? Wouldn’t it be good if there was an internal “checks & balances” or due diligence activity that could verify and refine the Mainframe Capacity Plan with IBM software cost control intelligence?

Having travelled and worked in Europe for 20+ years, I know my peers, colleagues and friends that I have encountered can concur with my next observation. The English and Americans might come up with a good idea and perhaps product, the French are most likely to test that product to destruction and identify numerous new features, while the Germans will write the ultimate technical manual…

zCost Management are a French company that specializes in cost optimization services and solutions for the IBM Mainframe. From an IBM Mainframe Capacity Planning & Software Cost Control Interaction viewpoint, they have developed their CCP-Tool (Capacity and Cost Planning) software solution. This software product bridges the gap between Mainframe Capacity Planning for hardware and the impact on associated IBM software (E.g. WLC, IPLA, et al) costs.

CCP-Tool facilitates medium-term (E.g. 3-5 year) Mainframe Capacity Planning by controlling Monthly License Charges (MLC) evolution, generating cost control policies, optimizing zSeries (E.g. PR/SM) resource sharing, delivering financial management via IBM Mainframe software cost control activity. CCP-Tool integrates with existing data and activities, using SMF Type 70 & 89 records, defining events (I.E. Capacity Requirements, Workload Moves) in the plan, simulating many options, delivering your final capacity plan and periodically (I.E. Quarterly) reviewing and revising the plan. Most importantly, CCP-Tool deploys many algorithms and techniques aligned to IBM software pricing mechanisms, especially WLC and R4HA related.

Therefore CCP-Tool delivers a financial management framework via a medium-term Capacity Plan with associated software cost control and zSeries (E.g. PR/SM) resource policies. This enables a balanced viewpoint of future Data Centre cost configurations from both a hardware and related IBM Mainframe software viewpoint. Moreover, for those IBM Mainframe users that don’t necessarily have the skills to perform this level of Mainframe cost control, CCP-Tool delivers a low cost solution to empower the Mainframe customer to engage IBM on an equal footing, at least from a reporting viewpoint. Similarly, for those Mainframe users with good IBM Mainframe software cost control skills, CCP-Tool offers a “checks & balances” viewpoint, delivering that all important due diligence sanity check! Quite simply, CCP-Tool simplifies the process of reconciling the optimal configuration both from an IBM Mainframe hardware and related software viewpoint.

Without doubt, if a Mainframe user still deploys a hardware centric viewpoint of the capacity planning activity, without considering the numerous intricacies of IBM Mainframe software pricing, in most cases, this could be a significant cost oversight. Put very simply, a low-end IBM Mainframe user of ~150 MSU (1,000 MIPS) might spend ~£1,000,000 per annum, just for a minimal configuration of z/OS, CICS, COBOL and DB2 software, so one must draw one’s own conclusions regarding the potential cost savings, when deploying the optimal zSeries hardware and associated IBM software configuration. I paraphrase Oscar Wilde:

“The definition of a cynic is someone that knows the price of everything, and the value of nothing!”

So, let’s reprise. You have performed your Mainframe Capacity Planning activity, considered historical SMF data for CPU usage, maybe including the R4HA metric, factored in additional new and growth business requirements, refined the capacity plan by using the zPCR tool, perhaps with data input from CPU MF and you now have identified your optimum zSeries Mainframe server?

Maybe you should think again, because the numerous IBM MLC software pricing mechanisms could impact your tried and tested Mainframe CPU hardware planning process. Firstly, for MLC software, the unit cost per MSU reduces, as the installed MSU capacity increases. In simple terms, this encourages the use of “large container” processing entities, LPARs and CPCs. Other AWLC and IWP related considerations further encourages the use of major subsystems (E.g. CICS, DB2, WebSphere, IMS) in larger MSU capacity LPARs and CPCs to benefit from the lowest unit cost per MSU. Additionally, do you really need to run all software on all processing entities? For example, programming languages (E.g. COBOL, PL/I, HLASM, et al) are not necessarily required in all environments (E.g. Test, Development, Production, et al). It is not uncommon for compile and link-edit functions to be processed in Development environments only, while only run-time libraries are required for Production. These “what if” scenarios generated by the numerous IBM MLC software pricing mechanisms must be considered, ideally by an internal resource, with the requisite skills and experience.

Today, who is performing this Mainframe Software Cost Control in your organization? Is it an internal resource with the requisite skills, an independent 3rd party, IBM or nobody? One must draw one’s own conclusions as to whether any of these parties who could perform this vital activity has a vested interest or not, and thus a potential conflict of interests…